![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfint | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
nfint.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfint | ⊢ Ⅎ𝑥∩ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 4477 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
2 | nfint.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
4 | 2, 3 | nfral 2945 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
5 | 4 | nfab 2769 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
6 | 1, 5 | nfcxfr 2762 | 1 ⊢ Ⅎ𝑥∩ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: {cab 2608 Ⅎwnfc 2751 ∀wral 2912 ∩ cint 4475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-int 4476 |
This theorem is referenced by: onminsb 6999 oawordeulem 7634 nnawordex 7717 rankidb 8663 cardmin2 8824 cardaleph 8912 cardmin 9386 ldsysgenld 30223 sltval2 31809 aomclem8 37631 |
Copyright terms: Public domain | W3C validator |