MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiota2 Structured version   Visualization version   GIF version

Theorem dfiota2 5852
Description: Alternate definition for descriptions. Definition 8.18 in [Quine] p. 56. (Contributed by Andrew Salmon, 30-Jun-2011.)
Assertion
Ref Expression
dfiota2 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Distinct variable groups:   𝑥,𝑦   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem dfiota2
StepHypRef Expression
1 df-iota 5851 . 2 (℩𝑥𝜑) = {𝑦 ∣ {𝑥𝜑} = {𝑦}}
2 df-sn 4178 . . . . . 6 {𝑦} = {𝑥𝑥 = 𝑦}
32eqeq2i 2634 . . . . 5 ({𝑥𝜑} = {𝑦} ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑦})
4 abbi 2737 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) ↔ {𝑥𝜑} = {𝑥𝑥 = 𝑦})
53, 4bitr4i 267 . . . 4 ({𝑥𝜑} = {𝑦} ↔ ∀𝑥(𝜑𝑥 = 𝑦))
65abbii 2739 . . 3 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
76unieqi 4445 . 2 {𝑦 ∣ {𝑥𝜑} = {𝑦}} = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
81, 7eqtri 2644 1 (℩𝑥𝜑) = {𝑦 ∣ ∀𝑥(𝜑𝑥 = 𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1481   = wceq 1483  {cab 2608  {csn 4177   cuni 4436  cio 5849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-sn 4178  df-uni 4437  df-iota 5851
This theorem is referenced by:  nfiota1  5853  nfiotad  5854  cbviota  5856  sb8iota  5858  iotaval  5862  iotanul  5866  fv2  6186
  Copyright terms: Public domain W3C validator