![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfnelbr2 | Structured version Visualization version GIF version |
Description: Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021.) |
Ref | Expression |
---|---|
dfnelbr2 | ⊢ _∉ = ((V × V) ∖ E ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difopab 5253 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} | |
2 | df-xp 5120 | . . 3 ⊢ (V × V) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} | |
3 | df-eprel 5029 | . . 3 ⊢ E = {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦} | |
4 | 2, 3 | difeq12i 3726 | . 2 ⊢ ((V × V) ∖ E ) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {〈𝑥, 𝑦〉 ∣ 𝑥 ∈ 𝑦}) |
5 | df-nelbr 41289 | . . 3 ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} | |
6 | vex 3203 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | vex 3203 | . . . . . 6 ⊢ 𝑦 ∈ V | |
8 | 6, 7 | pm3.2i 471 | . . . . 5 ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) |
9 | 8 | biantrur 527 | . . . 4 ⊢ (¬ 𝑥 ∈ 𝑦 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)) |
10 | 9 | opabbii 4717 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ¬ 𝑥 ∈ 𝑦} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} |
11 | 5, 10 | eqtri 2644 | . 2 ⊢ _∉ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥 ∈ 𝑦)} |
12 | 1, 4, 11 | 3eqtr4ri 2655 | 1 ⊢ _∉ = ((V × V) ∖ E ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∖ cdif 3571 {copab 4712 E cep 5028 × cxp 5112 _∉ cnelbr 41288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 df-eprel 5029 df-xp 5120 df-rel 5121 df-nelbr 41289 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |