Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfnelbr2 Structured version   Visualization version   GIF version

Theorem dfnelbr2 41290
Description: Alternate definition of the negated membership as binary relation. (Proposed by BJ, 27-Dec-2021.) (Contributed by AV, 27-Dec-2021.)
Assertion
Ref Expression
dfnelbr2 _∉ = ((V × V) ∖ E )

Proof of Theorem dfnelbr2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difopab 5253 . 2 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦)}
2 df-xp 5120 . . 3 (V × V) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)}
3 df-eprel 5029 . . 3 E = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦}
42, 3difeq12i 3726 . 2 ((V × V) ∖ E ) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} ∖ {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑦})
5 df-nelbr 41289 . . 3 _∉ = {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦}
6 vex 3203 . . . . . 6 𝑥 ∈ V
7 vex 3203 . . . . . 6 𝑦 ∈ V
86, 7pm3.2i 471 . . . . 5 (𝑥 ∈ V ∧ 𝑦 ∈ V)
98biantrur 527 . . . 4 𝑥𝑦 ↔ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦))
109opabbii 4717 . . 3 {⟨𝑥, 𝑦⟩ ∣ ¬ 𝑥𝑦} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦)}
115, 10eqtri 2644 . 2 _∉ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ V ∧ 𝑦 ∈ V) ∧ ¬ 𝑥𝑦)}
121, 4, 113eqtr4ri 2655 1 _∉ = ((V × V) ∖ E )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  {copab 4712   E cep 5028   × cxp 5112   _∉ cnelbr 41288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-eprel 5029  df-xp 5120  df-rel 5121  df-nelbr 41289
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator