| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfnul3 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) |
| Ref | Expression |
|---|---|
| dfnul3 | ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.24 926 | . . . . 5 ⊢ ¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴) | |
| 2 | equid 1939 | . . . . 5 ⊢ 𝑥 = 𝑥 | |
| 3 | 1, 2 | 2th 254 | . . . 4 ⊢ (¬ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴) ↔ 𝑥 = 𝑥) |
| 4 | 3 | con1bii 346 | . . 3 ⊢ (¬ 𝑥 = 𝑥 ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)) |
| 5 | 4 | abbii 2739 | . 2 ⊢ {𝑥 ∣ ¬ 𝑥 = 𝑥} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} |
| 6 | dfnul2 3917 | . 2 ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | |
| 7 | df-rab 2921 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐴)} | |
| 8 | 5, 6, 7 | 3eqtr4i 2654 | 1 ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 {crab 2916 ∅c0 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: difidALT 3949 kmlem3 8974 |
| Copyright terms: Public domain | W3C validator |