![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfres2 | Structured version Visualization version GIF version |
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.) |
Ref | Expression |
---|---|
dfres2 | ⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relres 5426 | . 2 ⊢ Rel (𝑅 ↾ 𝐴) | |
2 | relopab 5247 | . 2 ⊢ Rel {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} | |
3 | vex 3203 | . . . . 5 ⊢ 𝑤 ∈ V | |
4 | 3 | brres 5402 | . . . 4 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ (𝑧𝑅𝑤 ∧ 𝑧 ∈ 𝐴)) |
5 | df-br 4654 | . . . 4 ⊢ (𝑧(𝑅 ↾ 𝐴)𝑤 ↔ 〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴)) | |
6 | ancom 466 | . . . 4 ⊢ ((𝑧𝑅𝑤 ∧ 𝑧 ∈ 𝐴) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) | |
7 | 4, 5, 6 | 3bitr3i 290 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
8 | vex 3203 | . . . 4 ⊢ 𝑧 ∈ V | |
9 | eleq1 2689 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) | |
10 | breq1 4656 | . . . . 5 ⊢ (𝑥 = 𝑧 → (𝑥𝑅𝑦 ↔ 𝑧𝑅𝑦)) | |
11 | 9, 10 | anbi12d 747 | . . . 4 ⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦))) |
12 | breq2 4657 | . . . . 5 ⊢ (𝑦 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑧𝑅𝑤)) | |
13 | 12 | anbi2d 740 | . . . 4 ⊢ (𝑦 = 𝑤 → ((𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑦) ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤))) |
14 | 8, 3, 11, 13 | opelopab 4997 | . . 3 ⊢ (〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} ↔ (𝑧 ∈ 𝐴 ∧ 𝑧𝑅𝑤)) |
15 | 7, 14 | bitr4i 267 | . 2 ⊢ (〈𝑧, 𝑤〉 ∈ (𝑅 ↾ 𝐴) ↔ 〈𝑧, 𝑤〉 ∈ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)}) |
16 | 1, 2, 15 | eqrelriiv 5214 | 1 ⊢ (𝑅 ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝑦)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 〈cop 4183 class class class wbr 4653 {copab 4712 ↾ cres 5116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-res 5126 |
This theorem is referenced by: shftidt2 13821 dfres4 34061 cnvepres 34066 |
Copyright terms: Public domain | W3C validator |