MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfres2 Structured version   Visualization version   GIF version

Theorem dfres2 5453
Description: Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
Assertion
Ref Expression
dfres2 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem dfres2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relres 5426 . 2 Rel (𝑅𝐴)
2 relopab 5247 . 2 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
3 vex 3203 . . . . 5 𝑤 ∈ V
43brres 5402 . . . 4 (𝑧(𝑅𝐴)𝑤 ↔ (𝑧𝑅𝑤𝑧𝐴))
5 df-br 4654 . . . 4 (𝑧(𝑅𝐴)𝑤 ↔ ⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴))
6 ancom 466 . . . 4 ((𝑧𝑅𝑤𝑧𝐴) ↔ (𝑧𝐴𝑧𝑅𝑤))
74, 5, 63bitr3i 290 . . 3 (⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴) ↔ (𝑧𝐴𝑧𝑅𝑤))
8 vex 3203 . . . 4 𝑧 ∈ V
9 eleq1 2689 . . . . 5 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
10 breq1 4656 . . . . 5 (𝑥 = 𝑧 → (𝑥𝑅𝑦𝑧𝑅𝑦))
119, 10anbi12d 747 . . . 4 (𝑥 = 𝑧 → ((𝑥𝐴𝑥𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑦)))
12 breq2 4657 . . . . 5 (𝑦 = 𝑤 → (𝑧𝑅𝑦𝑧𝑅𝑤))
1312anbi2d 740 . . . 4 (𝑦 = 𝑤 → ((𝑧𝐴𝑧𝑅𝑦) ↔ (𝑧𝐴𝑧𝑅𝑤)))
148, 3, 11, 13opelopab 4997 . . 3 (⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)} ↔ (𝑧𝐴𝑧𝑅𝑤))
157, 14bitr4i 267 . 2 (⟨𝑧, 𝑤⟩ ∈ (𝑅𝐴) ↔ ⟨𝑧, 𝑤⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)})
161, 2, 15eqrelriiv 5214 1 (𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  cop 4183   class class class wbr 4653  {copab 4712  cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-res 5126
This theorem is referenced by:  shftidt2  13821  dfres4  34061  cnvepres  34066
  Copyright terms: Public domain W3C validator