MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difrab0eq Structured version   Visualization version   GIF version

Theorem difrab0eq 4038
Description: If the difference between the restricting class of a restricted class abstraction and the restricted class abstraction is empty, the restricting class is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
Assertion
Ref Expression
difrab0eq ((𝑉 ∖ {𝑥𝑉𝜑}) = ∅ ↔ 𝑉 = {𝑥𝑉𝜑})
Distinct variable group:   𝑥,𝑉
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem difrab0eq
StepHypRef Expression
1 ssdif0 3942 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ (𝑉 ∖ {𝑥𝑉𝜑}) = ∅)
2 ssrabeq 3689 . 2 (𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
31, 2bitr3i 266 1 ((𝑉 ∖ {𝑥𝑉𝜑}) = ∅ ↔ 𝑉 = {𝑥𝑉𝜑})
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  {crab 2916  cdif 3571  wss 3574  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  frgrregorufr0  27188
  Copyright terms: Public domain W3C validator