| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difsnpss | Structured version Visualization version GIF version | ||
| Description: (𝐵 ∖ {𝐴}) is a proper subclass of 𝐵 if and only if 𝐴 is a member of 𝐵. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| difsnpss | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 304 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ ¬ ¬ 𝐴 ∈ 𝐵) | |
| 2 | difss 3737 | . . . 4 ⊢ (𝐵 ∖ {𝐴}) ⊆ 𝐵 | |
| 3 | 2 | biantrur 527 | . . 3 ⊢ ((𝐵 ∖ {𝐴}) ≠ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵)) |
| 4 | difsnb 4337 | . . . 4 ⊢ (¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵) | |
| 5 | 4 | necon3bbii 2841 | . . 3 ⊢ (¬ ¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ≠ 𝐵) |
| 6 | df-pss 3590 | . . 3 ⊢ ((𝐵 ∖ {𝐴}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵)) | |
| 7 | 3, 5, 6 | 3bitr4i 292 | . 2 ⊢ (¬ ¬ 𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵) |
| 8 | 1, 7 | bitri 264 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 ∈ wcel 1990 ≠ wne 2794 ∖ cdif 3571 ⊆ wss 3574 ⊊ wpss 3575 {csn 4177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-pss 3590 df-sn 4178 |
| This theorem is referenced by: marypha1lem 8339 infpss 9039 ominf4 9134 mrieqv2d 16299 |
| Copyright terms: Public domain | W3C validator |