MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnpss Structured version   Visualization version   GIF version

Theorem difsnpss 4338
Description: (𝐵 ∖ {𝐴}) is a proper subclass of 𝐵 if and only if 𝐴 is a member of 𝐵. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
difsnpss (𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)

Proof of Theorem difsnpss
StepHypRef Expression
1 notnotb 304 . 2 (𝐴𝐵 ↔ ¬ ¬ 𝐴𝐵)
2 difss 3737 . . . 4 (𝐵 ∖ {𝐴}) ⊆ 𝐵
32biantrur 527 . . 3 ((𝐵 ∖ {𝐴}) ≠ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵))
4 difsnb 4337 . . . 4 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) = 𝐵)
54necon3bbii 2841 . . 3 (¬ ¬ 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ≠ 𝐵)
6 df-pss 3590 . . 3 ((𝐵 ∖ {𝐴}) ⊊ 𝐵 ↔ ((𝐵 ∖ {𝐴}) ⊆ 𝐵 ∧ (𝐵 ∖ {𝐴}) ≠ 𝐵))
73, 5, 63bitr4i 292 . 2 (¬ ¬ 𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)
81, 7bitri 264 1 (𝐴𝐵 ↔ (𝐵 ∖ {𝐴}) ⊊ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 384  wcel 1990  wne 2794  cdif 3571  wss 3574  wpss 3575  {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-pss 3590  df-sn 4178
This theorem is referenced by:  marypha1lem  8339  infpss  9039  ominf4  9134  mrieqv2d  16299
  Copyright terms: Public domain W3C validator