![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-pss | Structured version Visualization version GIF version |
Description: Define proper subclass relationship between two classes. Definition 5.9 of [TakeutiZaring] p. 17. For example, {1, 2} ⊊ {1, 2, 3} (ex-pss 27285). Note that ¬ 𝐴 ⊊ 𝐴 (proved in pssirr 3707). Contrast this relationship with the relationship 𝐴 ⊆ 𝐵 (as defined in df-ss 3588). Other possible definitions are given by dfpss2 3692 and dfpss3 3693. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
df-pss | ⊢ (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | wpss 3575 | . 2 wff 𝐴 ⊊ 𝐵 |
4 | 1, 2 | wss 3574 | . . 3 wff 𝐴 ⊆ 𝐵 |
5 | 1, 2 | wne 2794 | . . 3 wff 𝐴 ≠ 𝐵 |
6 | 4, 5 | wa 384 | . 2 wff (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) |
7 | 3, 6 | wb 196 | 1 wff (𝐴 ⊊ 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfpss2 3692 psseq1 3694 psseq2 3695 pssss 3702 pssne 3703 nssinpss 3856 pssdif 3945 0pss 4013 difsnpss 4338 ordelpss 5751 fisseneq 8171 ominf 8172 f1finf1o 8187 fofinf1o 8241 inf3lem2 8526 inf3lem4 8528 infeq5 8534 fin23lem31 9165 isf32lem6 9180 ipolt 17159 lssnle 18087 pgpfaclem2 18481 lspsncv0 19146 islbs3 19155 lbsextlem4 19161 lidlnz 19228 filssufilg 21715 alexsubALTlem4 21854 ppiltx 24903 ex-pss 27285 ch0pss 28304 nepss 31599 dfon2 31697 relowlpssretop 33212 finxpreclem3 33230 fin2solem 33395 lshpnelb 34271 lshpcmp 34275 lsatssn0 34289 lcvbr3 34310 lsatcv0 34318 lsat0cv 34320 lcvexchlem1 34321 islshpcv 34340 lkrpssN 34450 lkreqN 34457 osumcllem11N 35252 pexmidlem8N 35263 dochsordN 36663 dochsat 36672 dochshpncl 36673 dochexmidlem8 36756 mapdsord 36944 trelpss 38659 isomenndlem 40744 lvecpsslmod 42296 |
Copyright terms: Public domain | W3C validator |