MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diftpsn3OLD Structured version   Visualization version   GIF version

Theorem diftpsn3OLD 4333
Description: Obsolete proof of diftpsn3 4332 as of 23-Jul-2021. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
diftpsn3OLD ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})

Proof of Theorem diftpsn3OLD
StepHypRef Expression
1 df-tp 4182 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
21a1i 11 . . 3 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}))
32difeq1d 3727 . 2 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}))
4 difundir 3880 . . 3 (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶}))
54a1i 11 . 2 ((𝐴𝐶𝐵𝐶) → (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})))
6 df-pr 4180 . . . . . . . . 9 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
76a1i 11 . . . . . . . 8 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}))
87ineq1d 3813 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = (({𝐴} ∪ {𝐵}) ∩ {𝐶}))
9 incom 3805 . . . . . . . . 9 (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = ({𝐶} ∩ ({𝐴} ∪ {𝐵}))
10 indi 3873 . . . . . . . . 9 ({𝐶} ∩ ({𝐴} ∪ {𝐵})) = (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵}))
119, 10eqtri 2644 . . . . . . . 8 (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵}))
1211a1i 11 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → (({𝐴} ∪ {𝐵}) ∩ {𝐶}) = (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵})))
13 necom 2847 . . . . . . . . . . 11 (𝐴𝐶𝐶𝐴)
14 disjsn2 4247 . . . . . . . . . . 11 (𝐶𝐴 → ({𝐶} ∩ {𝐴}) = ∅)
1513, 14sylbi 207 . . . . . . . . . 10 (𝐴𝐶 → ({𝐶} ∩ {𝐴}) = ∅)
1615adantr 481 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → ({𝐶} ∩ {𝐴}) = ∅)
17 necom 2847 . . . . . . . . . . 11 (𝐵𝐶𝐶𝐵)
18 disjsn2 4247 . . . . . . . . . . 11 (𝐶𝐵 → ({𝐶} ∩ {𝐵}) = ∅)
1917, 18sylbi 207 . . . . . . . . . 10 (𝐵𝐶 → ({𝐶} ∩ {𝐵}) = ∅)
2019adantl 482 . . . . . . . . 9 ((𝐴𝐶𝐵𝐶) → ({𝐶} ∩ {𝐵}) = ∅)
2116, 20uneq12d 3768 . . . . . . . 8 ((𝐴𝐶𝐵𝐶) → (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵})) = (∅ ∪ ∅))
22 unidm 3756 . . . . . . . 8 (∅ ∪ ∅) = ∅
2321, 22syl6eq 2672 . . . . . . 7 ((𝐴𝐶𝐵𝐶) → (({𝐶} ∩ {𝐴}) ∪ ({𝐶} ∩ {𝐵})) = ∅)
248, 12, 233eqtrd 2660 . . . . . 6 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
25 disj3 4021 . . . . . 6 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶}))
2624, 25sylib 208 . . . . 5 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶}))
2726eqcomd 2628 . . . 4 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∖ {𝐶}) = {𝐴, 𝐵})
28 difid 3948 . . . . 5 ({𝐶} ∖ {𝐶}) = ∅
2928a1i 11 . . . 4 ((𝐴𝐶𝐵𝐶) → ({𝐶} ∖ {𝐶}) = ∅)
3027, 29uneq12d 3768 . . 3 ((𝐴𝐶𝐵𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵} ∪ ∅))
31 un0 3967 . . 3 ({𝐴, 𝐵} ∪ ∅) = {𝐴, 𝐵}
3230, 31syl6eq 2672 . 2 ((𝐴𝐶𝐵𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = {𝐴, 𝐵})
333, 5, 323eqtrd 2660 1 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wne 2794  cdif 3571  cun 3572  cin 3573  c0 3915  {csn 4177  {cpr 4179  {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator