MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diftpsn3 Structured version   Visualization version   GIF version

Theorem diftpsn3 4332
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
diftpsn3 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})

Proof of Theorem diftpsn3
StepHypRef Expression
1 disjprsn 4250 . . . . 5 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
2 disj3 4021 . . . . 5 (({𝐴, 𝐵} ∩ {𝐶}) = ∅ ↔ {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶}))
31, 2sylib 208 . . . 4 ((𝐴𝐶𝐵𝐶) → {𝐴, 𝐵} = ({𝐴, 𝐵} ∖ {𝐶}))
43eqcomd 2628 . . 3 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∖ {𝐶}) = {𝐴, 𝐵})
5 difid 3948 . . . 4 ({𝐶} ∖ {𝐶}) = ∅
65a1i 11 . . 3 ((𝐴𝐶𝐵𝐶) → ({𝐶} ∖ {𝐶}) = ∅)
74, 6uneq12d 3768 . 2 ((𝐴𝐶𝐵𝐶) → (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵} ∪ ∅))
8 df-tp 4182 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
98difeq1i 3724 . . 3 ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶})
10 difundir 3880 . . 3 (({𝐴, 𝐵} ∪ {𝐶}) ∖ {𝐶}) = (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶}))
119, 10eqtr2i 2645 . 2 (({𝐴, 𝐵} ∖ {𝐶}) ∪ ({𝐶} ∖ {𝐶})) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶})
12 un0 3967 . 2 ({𝐴, 𝐵} ∪ ∅) = {𝐴, 𝐵}
137, 11, 123eqtr3g 2679 1 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wne 2794  cdif 3571  cun 3572  cin 3573  c0 3915  {csn 4177  {cpr 4179  {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by:  f13dfv  6530  nb3grprlem2  26283  cplgr3v  26331  frgr3v  27139  3vfriswmgr  27142  signswch  30638  signstfvcl  30650
  Copyright terms: Public domain W3C validator