MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difundi Structured version   Visualization version   GIF version

Theorem difundi 3879
Description: Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
difundi (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))

Proof of Theorem difundi
StepHypRef Expression
1 dfun3 3865 . . 3 (𝐵𝐶) = (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))
21difeq2i 3725 . 2 (𝐴 ∖ (𝐵𝐶)) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))))
3 inindi 3830 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = ((𝐴 ∩ (V ∖ 𝐵)) ∩ (𝐴 ∩ (V ∖ 𝐶)))
4 dfin2 3860 . . 3 (𝐴 ∩ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))) = (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶))))
5 invdif 3868 . . . 4 (𝐴 ∩ (V ∖ 𝐵)) = (𝐴𝐵)
6 invdif 3868 . . . 4 (𝐴 ∩ (V ∖ 𝐶)) = (𝐴𝐶)
75, 6ineq12i 3812 . . 3 ((𝐴 ∩ (V ∖ 𝐵)) ∩ (𝐴 ∩ (V ∖ 𝐶))) = ((𝐴𝐵) ∩ (𝐴𝐶))
83, 4, 73eqtr3i 2652 . 2 (𝐴 ∖ (V ∖ ((V ∖ 𝐵) ∩ (V ∖ 𝐶)))) = ((𝐴𝐵) ∩ (𝐴𝐶))
92, 8eqtri 2644 1 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  Vcvv 3200  cdif 3571  cun 3572  cin 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581
This theorem is referenced by:  undm  3885  uncld  20845  inmbl  23310  difuncomp  29369  clsun  32323  poimirlem8  33417  ntrclskb  38367  ntrclsk3  38368  ntrclsk13  38369
  Copyright terms: Public domain W3C validator