| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difundi | Structured version Visualization version Unicode version | ||
| Description: Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| Ref | Expression |
|---|---|
| difundi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfun3 3865 |
. . 3
| |
| 2 | 1 | difeq2i 3725 |
. 2
|
| 3 | inindi 3830 |
. . 3
| |
| 4 | dfin2 3860 |
. . 3
| |
| 5 | invdif 3868 |
. . . 4
| |
| 6 | invdif 3868 |
. . . 4
| |
| 7 | 5, 6 | ineq12i 3812 |
. . 3
|
| 8 | 3, 4, 7 | 3eqtr3i 2652 |
. 2
|
| 9 | 2, 8 | eqtri 2644 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 |
| This theorem is referenced by: undm 3885 uncld 20845 inmbl 23310 difuncomp 29369 clsun 32323 poimirlem8 33417 ntrclskb 38367 ntrclsk3 38368 ntrclsk13 38369 |
| Copyright terms: Public domain | W3C validator |