Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjif2 Structured version   Visualization version   GIF version

Theorem disjif2 29394
Description: Property of a disjoint collection: if 𝐵(𝑥) and 𝐵(𝑌) = 𝐷 have a common element 𝑍, then 𝑥 = 𝑌. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Hypotheses
Ref Expression
disjif2.1 𝑥𝐴
disjif2.2 𝑥𝐶
disjif2.3 (𝑥 = 𝑌𝐵 = 𝐶)
Assertion
Ref Expression
disjif2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ (𝑍𝐵𝑍𝐶)) → 𝑥 = 𝑌)
Distinct variable group:   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝑍(𝑥)

Proof of Theorem disjif2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inelcm 4032 . 2 ((𝑍𝐵𝑍𝐶) → (𝐵𝐶) ≠ ∅)
2 disjif2.1 . . . . . . . 8 𝑥𝐴
32disjorsf 29393 . . . . . . 7 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
4 equequ1 1952 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦 = 𝑧𝑥 = 𝑧))
5 csbeq1 3536 . . . . . . . . . . . 12 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝑥 / 𝑥𝐵)
6 csbid 3541 . . . . . . . . . . . 12 𝑥 / 𝑥𝐵 = 𝐵
75, 6syl6eq 2672 . . . . . . . . . . 11 (𝑦 = 𝑥𝑦 / 𝑥𝐵 = 𝐵)
87ineq1d 3813 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = (𝐵𝑧 / 𝑥𝐵))
98eqeq1d 2624 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ ↔ (𝐵𝑧 / 𝑥𝐵) = ∅))
104, 9orbi12d 746 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) ↔ (𝑥 = 𝑧 ∨ (𝐵𝑧 / 𝑥𝐵) = ∅)))
11 eqeq2 2633 . . . . . . . . 9 (𝑧 = 𝑌 → (𝑥 = 𝑧𝑥 = 𝑌))
12 nfcv 2764 . . . . . . . . . . . 12 𝑥𝑌
13 disjif2.2 . . . . . . . . . . . 12 𝑥𝐶
14 disjif2.3 . . . . . . . . . . . 12 (𝑥 = 𝑌𝐵 = 𝐶)
1512, 13, 14csbhypf 3552 . . . . . . . . . . 11 (𝑧 = 𝑌𝑧 / 𝑥𝐵 = 𝐶)
1615ineq2d 3814 . . . . . . . . . 10 (𝑧 = 𝑌 → (𝐵𝑧 / 𝑥𝐵) = (𝐵𝐶))
1716eqeq1d 2624 . . . . . . . . 9 (𝑧 = 𝑌 → ((𝐵𝑧 / 𝑥𝐵) = ∅ ↔ (𝐵𝐶) = ∅))
1811, 17orbi12d 746 . . . . . . . 8 (𝑧 = 𝑌 → ((𝑥 = 𝑧 ∨ (𝐵𝑧 / 𝑥𝐵) = ∅) ↔ (𝑥 = 𝑌 ∨ (𝐵𝐶) = ∅)))
1910, 18rspc2v 3322 . . . . . . 7 ((𝑥𝐴𝑌𝐴) → (∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅) → (𝑥 = 𝑌 ∨ (𝐵𝐶) = ∅)))
203, 19syl5bi 232 . . . . . 6 ((𝑥𝐴𝑌𝐴) → (Disj 𝑥𝐴 𝐵 → (𝑥 = 𝑌 ∨ (𝐵𝐶) = ∅)))
2120impcom 446 . . . . 5 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴)) → (𝑥 = 𝑌 ∨ (𝐵𝐶) = ∅))
2221ord 392 . . . 4 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴)) → (¬ 𝑥 = 𝑌 → (𝐵𝐶) = ∅))
2322necon1ad 2811 . . 3 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴)) → ((𝐵𝐶) ≠ ∅ → 𝑥 = 𝑌))
24233impia 1261 . 2 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ (𝐵𝐶) ≠ ∅) → 𝑥 = 𝑌)
251, 24syl3an3 1361 1 ((Disj 𝑥𝐴 𝐵 ∧ (𝑥𝐴𝑌𝐴) ∧ (𝑍𝐵𝑍𝐶)) → 𝑥 = 𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wnfc 2751  wne 2794  wral 2912  csb 3533  cin 3573  c0 3915  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rmo 2920  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-in 3581  df-nul 3916  df-disj 4621
This theorem is referenced by:  disjabrexf  29396
  Copyright terms: Public domain W3C validator