Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjif2 Structured version   Visualization version   Unicode version

Theorem disjif2 29394
Description: Property of a disjoint collection: if  B ( x ) and  B ( Y )  =  D have a common element  Z, then  x  =  Y. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Hypotheses
Ref Expression
disjif2.1  |-  F/_ x A
disjif2.2  |-  F/_ x C
disjif2.3  |-  ( x  =  Y  ->  B  =  C )
Assertion
Ref Expression
disjif2  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
)  /\  ( Z  e.  B  /\  Z  e.  C ) )  ->  x  =  Y )
Distinct variable group:    x, Y
Allowed substitution hints:    A( x)    B( x)    C( x)    Z( x)

Proof of Theorem disjif2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inelcm 4032 . 2  |-  ( ( Z  e.  B  /\  Z  e.  C )  ->  ( B  i^i  C
)  =/=  (/) )
2 disjif2.1 . . . . . . . 8  |-  F/_ x A
32disjorsf 29393 . . . . . . 7  |-  (Disj  x  e.  A  B  <->  A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
4 equequ1 1952 . . . . . . . . 9  |-  ( y  =  x  ->  (
y  =  z  <->  x  =  z ) )
5 csbeq1 3536 . . . . . . . . . . . 12  |-  ( y  =  x  ->  [_ y  /  x ]_ B  = 
[_ x  /  x ]_ B )
6 csbid 3541 . . . . . . . . . . . 12  |-  [_ x  /  x ]_ B  =  B
75, 6syl6eq 2672 . . . . . . . . . . 11  |-  ( y  =  x  ->  [_ y  /  x ]_ B  =  B )
87ineq1d 3813 . . . . . . . . . 10  |-  ( y  =  x  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  ( B  i^i  [_ z  /  x ]_ B ) )
98eqeq1d 2624 . . . . . . . . 9  |-  ( y  =  x  ->  (
( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
104, 9orbi12d 746 . . . . . . . 8  |-  ( y  =  x  ->  (
( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) 
<->  ( x  =  z  \/  ( B  i^i  [_ z  /  x ]_ B )  =  (/) ) ) )
11 eqeq2 2633 . . . . . . . . 9  |-  ( z  =  Y  ->  (
x  =  z  <->  x  =  Y ) )
12 nfcv 2764 . . . . . . . . . . . 12  |-  F/_ x Y
13 disjif2.2 . . . . . . . . . . . 12  |-  F/_ x C
14 disjif2.3 . . . . . . . . . . . 12  |-  ( x  =  Y  ->  B  =  C )
1512, 13, 14csbhypf 3552 . . . . . . . . . . 11  |-  ( z  =  Y  ->  [_ z  /  x ]_ B  =  C )
1615ineq2d 3814 . . . . . . . . . 10  |-  ( z  =  Y  ->  ( B  i^i  [_ z  /  x ]_ B )  =  ( B  i^i  C ) )
1716eqeq1d 2624 . . . . . . . . 9  |-  ( z  =  Y  ->  (
( B  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( B  i^i  C )  =  (/) ) )
1811, 17orbi12d 746 . . . . . . . 8  |-  ( z  =  Y  ->  (
( x  =  z  \/  ( B  i^i  [_ z  /  x ]_ B )  =  (/) ) 
<->  ( x  =  Y  \/  ( B  i^i  C )  =  (/) ) ) )
1910, 18rspc2v 3322 . . . . . . 7  |-  ( ( x  e.  A  /\  Y  e.  A )  ->  ( A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  ->  ( x  =  Y  \/  ( B  i^i  C )  =  (/) ) ) )
203, 19syl5bi 232 . . . . . 6  |-  ( ( x  e.  A  /\  Y  e.  A )  ->  (Disj  x  e.  A  B  ->  ( x  =  Y  \/  ( B  i^i  C )  =  (/) ) ) )
2120impcom 446 . . . . 5  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
) )  ->  (
x  =  Y  \/  ( B  i^i  C )  =  (/) ) )
2221ord 392 . . . 4  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
) )  ->  ( -.  x  =  Y  ->  ( B  i^i  C
)  =  (/) ) )
2322necon1ad 2811 . . 3  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
) )  ->  (
( B  i^i  C
)  =/=  (/)  ->  x  =  Y ) )
24233impia 1261 . 2  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
)  /\  ( B  i^i  C )  =/=  (/) )  ->  x  =  Y )
251, 24syl3an3 1361 1  |-  ( (Disj  x  e.  A  B  /\  ( x  e.  A  /\  Y  e.  A
)  /\  ( Z  e.  B  /\  Z  e.  C ) )  ->  x  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   F/_wnfc 2751    =/= wne 2794   A.wral 2912   [_csb 3533    i^i cin 3573   (/)c0 3915  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rmo 2920  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-in 3581  df-nul 3916  df-disj 4621
This theorem is referenced by:  disjabrexf  29396
  Copyright terms: Public domain W3C validator