Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjiunel Structured version   Visualization version   GIF version

Theorem disjiunel 29409
Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
disjiunel.1 (𝜑Disj 𝑥𝐴 𝐵)
disjiunel.2 (𝑥 = 𝑌𝐵 = 𝐷)
disjiunel.3 (𝜑𝐸𝐴)
disjiunel.4 (𝜑𝑌 ∈ (𝐴𝐸))
Assertion
Ref Expression
disjiunel (𝜑 → ( 𝑥𝐸 𝐵𝐷) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐷   𝑥,𝐸   𝑥,𝑌
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem disjiunel
StepHypRef Expression
1 disjiunel.3 . . . . 5 (𝜑𝐸𝐴)
2 disjiunel.4 . . . . . . 7 (𝜑𝑌 ∈ (𝐴𝐸))
32eldifad 3586 . . . . . 6 (𝜑𝑌𝐴)
43snssd 4340 . . . . 5 (𝜑 → {𝑌} ⊆ 𝐴)
51, 4unssd 3789 . . . 4 (𝜑 → (𝐸 ∪ {𝑌}) ⊆ 𝐴)
6 disjiunel.1 . . . 4 (𝜑Disj 𝑥𝐴 𝐵)
7 disjss1 4626 . . . 4 ((𝐸 ∪ {𝑌}) ⊆ 𝐴 → (Disj 𝑥𝐴 𝐵Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵))
85, 6, 7sylc 65 . . 3 (𝜑Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵)
92eldifbd 3587 . . . 4 (𝜑 → ¬ 𝑌𝐸)
10 disjiunel.2 . . . . 5 (𝑥 = 𝑌𝐵 = 𝐷)
1110disjunsn 29407 . . . 4 ((𝑌𝐴 ∧ ¬ 𝑌𝐸) → (Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵 ↔ (Disj 𝑥𝐸 𝐵 ∧ ( 𝑥𝐸 𝐵𝐷) = ∅)))
123, 9, 11syl2anc 693 . . 3 (𝜑 → (Disj 𝑥 ∈ (𝐸 ∪ {𝑌})𝐵 ↔ (Disj 𝑥𝐸 𝐵 ∧ ( 𝑥𝐸 𝐵𝐷) = ∅)))
138, 12mpbid 222 . 2 (𝜑 → (Disj 𝑥𝐸 𝐵 ∧ ( 𝑥𝐸 𝐵𝐷) = ∅))
1413simprd 479 1 (𝜑 → ( 𝑥𝐸 𝐵𝐷) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cdif 3571  cun 3572  cin 3573  wss 3574  c0 3915  {csn 4177   ciun 4520  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-iun 4522  df-disj 4621
This theorem is referenced by:  disjuniel  29410
  Copyright terms: Public domain W3C validator