Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjiunel Structured version   Visualization version   Unicode version

Theorem disjiunel 29409
Description: A set of elements B of a disjoint set A is disjoint with another element of that set. (Contributed by Thierry Arnoux, 24-May-2020.)
Hypotheses
Ref Expression
disjiunel.1  |-  ( ph  -> Disj  x  e.  A  B
)
disjiunel.2  |-  ( x  =  Y  ->  B  =  D )
disjiunel.3  |-  ( ph  ->  E  C_  A )
disjiunel.4  |-  ( ph  ->  Y  e.  ( A 
\  E ) )
Assertion
Ref Expression
disjiunel  |-  ( ph  ->  ( U_ x  e.  E  B  i^i  D
)  =  (/) )
Distinct variable groups:    x, A    x, D    x, E    x, Y
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem disjiunel
StepHypRef Expression
1 disjiunel.3 . . . . 5  |-  ( ph  ->  E  C_  A )
2 disjiunel.4 . . . . . . 7  |-  ( ph  ->  Y  e.  ( A 
\  E ) )
32eldifad 3586 . . . . . 6  |-  ( ph  ->  Y  e.  A )
43snssd 4340 . . . . 5  |-  ( ph  ->  { Y }  C_  A )
51, 4unssd 3789 . . . 4  |-  ( ph  ->  ( E  u.  { Y } )  C_  A
)
6 disjiunel.1 . . . 4  |-  ( ph  -> Disj  x  e.  A  B
)
7 disjss1 4626 . . . 4  |-  ( ( E  u.  { Y } )  C_  A  ->  (Disj  x  e.  A  B  -> Disj  x  e.  ( E  u.  { Y }
) B ) )
85, 6, 7sylc 65 . . 3  |-  ( ph  -> Disj  x  e.  ( E  u.  { Y } ) B )
92eldifbd 3587 . . . 4  |-  ( ph  ->  -.  Y  e.  E
)
10 disjiunel.2 . . . . 5  |-  ( x  =  Y  ->  B  =  D )
1110disjunsn 29407 . . . 4  |-  ( ( Y  e.  A  /\  -.  Y  e.  E
)  ->  (Disj  x  e.  ( E  u.  { Y } ) B  <->  (Disj  x  e.  E  B  /\  ( U_ x  e.  E  B  i^i  D )  =  (/) ) ) )
123, 9, 11syl2anc 693 . . 3  |-  ( ph  ->  (Disj  x  e.  ( E  u.  { Y } ) B  <->  (Disj  x  e.  E  B  /\  ( U_ x  e.  E  B  i^i  D )  =  (/) ) ) )
138, 12mpbid 222 . 2  |-  ( ph  ->  (Disj  x  e.  E  B  /\  ( U_ x  e.  E  B  i^i  D )  =  (/) ) )
1413simprd 479 1  |-  ( ph  ->  ( U_ x  e.  E  B  i^i  D
)  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   U_ciun 4520  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-iun 4522  df-disj 4621
This theorem is referenced by:  disjuniel  29410
  Copyright terms: Public domain W3C validator