MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  djussxp Structured version   Visualization version   GIF version

Theorem djussxp 5267
Description: Disjoint union is a subset of a Cartesian product. (Contributed by Stefan O'Rear, 21-Nov-2014.)
Assertion
Ref Expression
djussxp 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem djussxp
StepHypRef Expression
1 iunss 4561 . 2 ( 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V) ↔ ∀𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V))
2 snssi 4339 . . 3 (𝑥𝐴 → {𝑥} ⊆ 𝐴)
3 ssv 3625 . . 3 𝐵 ⊆ V
4 xpss12 5225 . . 3 (({𝑥} ⊆ 𝐴𝐵 ⊆ V) → ({𝑥} × 𝐵) ⊆ (𝐴 × V))
52, 3, 4sylancl 694 . 2 (𝑥𝐴 → ({𝑥} × 𝐵) ⊆ (𝐴 × V))
61, 5mprgbir 2927 1 𝑥𝐴 ({𝑥} × 𝐵) ⊆ (𝐴 × V)
Colors of variables: wff setvar class
Syntax hints:  wcel 1990  Vcvv 3200  wss 3574  {csn 4177   ciun 4520   × cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-sn 4178  df-iun 4522  df-opab 4713  df-xp 5120
This theorem is referenced by:  djudisj  5561  iundom2g  9362
  Copyright terms: Public domain W3C validator