| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dveeq2-o | Structured version Visualization version GIF version | ||
| Description: Quantifier introduction when one pair of variables is distinct. Version of dveeq2 2298 using ax-c15 34174. (Contributed by NM, 2-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dveeq2-o | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-5 1839 | . 2 ⊢ (𝑧 = 𝑤 → ∀𝑥 𝑧 = 𝑤) | |
| 2 | ax-5 1839 | . 2 ⊢ (𝑧 = 𝑦 → ∀𝑤 𝑧 = 𝑦) | |
| 3 | equequ2 1953 | . 2 ⊢ (𝑤 = 𝑦 → (𝑧 = 𝑤 ↔ 𝑧 = 𝑦)) | |
| 4 | 1, 2, 3 | dvelimf-o 34214 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-c5 34168 ax-c4 34169 ax-c7 34170 ax-c10 34171 ax-c11 34172 ax-c9 34175 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: ax12eq 34226 ax12el 34227 ax12inda 34233 ax12v2-o 34234 |
| Copyright terms: Public domain | W3C validator |