| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eel1111 | Structured version Visualization version GIF version | ||
| Description: Four-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl112anc 1330 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
| Ref | Expression |
|---|---|
| eel1111.1 | ⊢ (𝜑 → 𝜓) |
| eel1111.2 | ⊢ (𝜑 → 𝜒) |
| eel1111.3 | ⊢ (𝜑 → 𝜃) |
| eel1111.4 | ⊢ (𝜑 → 𝜏) |
| eel1111.5 | ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) |
| Ref | Expression |
|---|---|
| eel1111 | ⊢ (𝜑 → 𝜂) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eel1111.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 2 | eel1111.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 3 | eel1111.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 4 | eel1111.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
| 5 | eel1111.5 | . . . 4 ⊢ ((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) | |
| 6 | 5 | exp41 638 | . . 3 ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂)))) |
| 7 | 2, 3, 4, 6 | syl3c 66 | . 2 ⊢ (𝜑 → (𝜏 → 𝜂)) |
| 8 | 1, 7 | mpd 15 | 1 ⊢ (𝜑 → 𝜂) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: sineq0ALT 39173 |
| Copyright terms: Public domain | W3C validator |