Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  el12 Structured version   Visualization version   GIF version

Theorem el12 38953
Description: Virtual deduction form of syl2an 494. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
el12.1 (   𝜑   ▶   𝜓   )
el12.2 (   𝜏   ▶   𝜒   )
el12.3 ((𝜓𝜒) → 𝜃)
Assertion
Ref Expression
el12 (   (   𝜑   ,   𝜏   )   ▶   𝜃   )

Proof of Theorem el12
StepHypRef Expression
1 el12.1 . . . 4 (   𝜑   ▶   𝜓   )
21in1 38787 . . 3 (𝜑𝜓)
3 el12.2 . . . 4 (   𝜏   ▶   𝜒   )
43in1 38787 . . 3 (𝜏𝜒)
5 el12.3 . . 3 ((𝜓𝜒) → 𝜃)
62, 4, 5syl2an 494 . 2 ((𝜑𝜏) → 𝜃)
76dfvd2anir 38800 1 (   (   𝜑   ,   𝜏   )   ▶   𝜃   )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  (   wvd1 38785  (   wvhc2 38796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-vd1 38786  df-vhc2 38797
This theorem is referenced by:  elpwgdedVD  39153  sspwimpVD  39155  sspwimpcfVD  39157  suctrALTcfVD  39159
  Copyright terms: Public domain W3C validator