Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elbigofrcl Structured version   Visualization version   GIF version

Theorem elbigofrcl 42344
Description: Reverse closure of the "big-O" function. (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
elbigofrcl (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ))

Proof of Theorem elbigofrcl
Dummy variables 𝑥 𝑔 𝑓 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6220 . 2 (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ dom Ο)
2 df-bigo 42342 . . . 4 Ο = (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))})
32dmeqi 5325 . . 3 dom Ο = dom (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))})
4 dmmptg 5632 . . . 4 (∀𝑔 ∈ (ℝ ↑pm ℝ){𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))} ∈ V → dom (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))}) = (ℝ ↑pm ℝ))
5 ovex 6678 . . . . . 6 (ℝ ↑pm ℝ) ∈ V
65rabex 4813 . . . . 5 {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))} ∈ V
76a1i 11 . . . 4 (𝑔 ∈ (ℝ ↑pm ℝ) → {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))} ∈ V)
84, 7mprg 2926 . . 3 dom (𝑔 ∈ (ℝ ↑pm ℝ) ↦ {𝑓 ∈ (ℝ ↑pm ℝ) ∣ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝑓 ∩ (𝑥[,)+∞))(𝑓𝑦) ≤ (𝑚 · (𝑔𝑦))}) = (ℝ ↑pm ℝ)
93, 8eqtri 2644 . 2 dom Ο = (ℝ ↑pm ℝ)
101, 9syl6eleq 2711 1 (𝐹 ∈ (Ο‘𝐺) → 𝐺 ∈ (ℝ ↑pm ℝ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cin 3573   class class class wbr 4653  cmpt 4729  dom cdm 5114  cfv 5888  (class class class)co 6650  pm cpm 7858  cr 9935   · cmul 9941  +∞cpnf 10071  cle 10075  [,)cico 12177  Οcbigo 42341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ov 6653  df-bigo 42342
This theorem is referenced by:  elbigo  42345  elbigoimp  42350
  Copyright terms: Public domain W3C validator