| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldifeldifsn | Structured version Visualization version GIF version | ||
| Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| eldifeldifsn | ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4339 | . . 3 ⊢ (𝑋 ∈ 𝐴 → {𝑋} ⊆ 𝐴) | |
| 2 | 1 | sscond 3747 | . 2 ⊢ (𝑋 ∈ 𝐴 → (𝐵 ∖ 𝐴) ⊆ (𝐵 ∖ {𝑋})) |
| 3 | 2 | sselda 3603 | 1 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ (𝐵 ∖ 𝐴)) → 𝑌 ∈ (𝐵 ∖ {𝑋})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ∖ cdif 3571 {csn 4177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-sn 4178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |