MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldifeldifsn Structured version   Visualization version   Unicode version

Theorem eldifeldifsn 4342
Description: An element of a difference set is an element of the difference with a singleton. (Contributed by AV, 2-Jan-2022.)
Assertion
Ref Expression
eldifeldifsn  |-  ( ( X  e.  A  /\  Y  e.  ( B  \  A ) )  ->  Y  e.  ( B  \  { X } ) )

Proof of Theorem eldifeldifsn
StepHypRef Expression
1 snssi 4339 . . 3  |-  ( X  e.  A  ->  { X }  C_  A )
21sscond 3747 . 2  |-  ( X  e.  A  ->  ( B  \  A )  C_  ( B  \  { X } ) )
32sselda 3603 1  |-  ( ( X  e.  A  /\  Y  e.  ( B  \  A ) )  ->  Y  e.  ( B  \  { X } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990    \ cdif 3571   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-sn 4178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator