MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmeldmressn Structured version   Visualization version   GIF version

Theorem eldmeldmressn 5440
Description: An element of the domain (of a relation) is an element of the domain of the restriction (of the relation) to the singleton containing this element. (Contributed by Alexander van der Vekens, 22-Jul-2018.)
Assertion
Ref Expression
eldmeldmressn (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))

Proof of Theorem eldmeldmressn
StepHypRef Expression
1 eldmressnsn 5439 . 2 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))
2 elinel2 3800 . . 3 (𝑋 ∈ ({𝑋} ∩ dom 𝐹) → 𝑋 ∈ dom 𝐹)
3 dmres 5419 . . 3 dom (𝐹 ↾ {𝑋}) = ({𝑋} ∩ dom 𝐹)
42, 3eleq2s 2719 . 2 (𝑋 ∈ dom (𝐹 ↾ {𝑋}) → 𝑋 ∈ dom 𝐹)
51, 4impbii 199 1 (𝑋 ∈ dom 𝐹𝑋 ∈ dom (𝐹 ↾ {𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 1990  cin 3573  {csn 4177  dom cdm 5114  cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-dm 5124  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator