| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version | ||
| Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
| elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
| Ref | Expression |
|---|---|
| elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | elpwi2.1 | . . 3 ⊢ 𝐵 ∈ 𝑉 | |
| 3 | elpw2g 4827 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
| 5 | 1, 4 | mpbir 221 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∈ wcel 1990 ⊆ wss 3574 𝒫 cpw 4158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 |
| This theorem is referenced by: sprsymrelfolem1 41742 |
| Copyright terms: Public domain | W3C validator |