MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwi2 Structured version   Visualization version   GIF version

Theorem elpwi2 4829
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
elpwi2.1 𝐵𝑉
elpwi2.2 𝐴𝐵
Assertion
Ref Expression
elpwi2 𝐴 ∈ 𝒫 𝐵

Proof of Theorem elpwi2
StepHypRef Expression
1 elpwi2.2 . 2 𝐴𝐵
2 elpwi2.1 . . 3 𝐵𝑉
3 elpw2g 4827 . . 3 (𝐵𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
42, 3ax-mp 5 . 2 (𝐴 ∈ 𝒫 𝐵𝐴𝐵)
51, 4mpbir 221 1 𝐴 ∈ 𝒫 𝐵
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 1990  wss 3574  𝒫 cpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by:  sprsymrelfolem1  41742
  Copyright terms: Public domain W3C validator