MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwnss Structured version   Visualization version   GIF version

Theorem pwnss 4830
Description: The power set of a set is never a subset. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Assertion
Ref Expression
pwnss (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)

Proof of Theorem pwnss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq12 2691 . . . . . . 7 ((𝑦 = {𝑥𝐴𝑥𝑥} ∧ 𝑦 = {𝑥𝐴𝑥𝑥}) → (𝑦𝑦 ↔ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
21anidms 677 . . . . . 6 (𝑦 = {𝑥𝐴𝑥𝑥} → (𝑦𝑦 ↔ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
32notbid 308 . . . . 5 (𝑦 = {𝑥𝐴𝑥𝑥} → (¬ 𝑦𝑦 ↔ ¬ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
4 df-nel 2898 . . . . . . 7 (𝑥𝑥 ↔ ¬ 𝑥𝑥)
5 eleq12 2691 . . . . . . . . 9 ((𝑥 = 𝑦𝑥 = 𝑦) → (𝑥𝑥𝑦𝑦))
65anidms 677 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝑥𝑦𝑦))
76notbid 308 . . . . . . 7 (𝑥 = 𝑦 → (¬ 𝑥𝑥 ↔ ¬ 𝑦𝑦))
84, 7syl5bb 272 . . . . . 6 (𝑥 = 𝑦 → (𝑥𝑥 ↔ ¬ 𝑦𝑦))
98cbvrabv 3199 . . . . 5 {𝑥𝐴𝑥𝑥} = {𝑦𝐴 ∣ ¬ 𝑦𝑦}
103, 9elrab2 3366 . . . 4 ({𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥} ↔ ({𝑥𝐴𝑥𝑥} ∈ 𝐴 ∧ ¬ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥}))
11 pclem6 971 . . . 4 (({𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥} ↔ ({𝑥𝐴𝑥𝑥} ∈ 𝐴 ∧ ¬ {𝑥𝐴𝑥𝑥} ∈ {𝑥𝐴𝑥𝑥})) → ¬ {𝑥𝐴𝑥𝑥} ∈ 𝐴)
1210, 11ax-mp 5 . . 3 ¬ {𝑥𝐴𝑥𝑥} ∈ 𝐴
13 ssel 3597 . . 3 (𝒫 𝐴𝐴 → ({𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴 → {𝑥𝐴𝑥𝑥} ∈ 𝐴))
1412, 13mtoi 190 . 2 (𝒫 𝐴𝐴 → ¬ {𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴)
15 ssrab2 3687 . . 3 {𝑥𝐴𝑥𝑥} ⊆ 𝐴
16 elpw2g 4827 . . 3 (𝐴𝑉 → ({𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴 ↔ {𝑥𝐴𝑥𝑥} ⊆ 𝐴))
1715, 16mpbiri 248 . 2 (𝐴𝑉 → {𝑥𝐴𝑥𝑥} ∈ 𝒫 𝐴)
1814, 17nsyl3 133 1 (𝐴𝑉 → ¬ 𝒫 𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wnel 2897  {crab 2916  wss 3574  𝒫 cpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-rab 2921  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by:  pwne  4831  pwuninel2  7400
  Copyright terms: Public domain W3C validator