![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elsymdif | Structured version Visualization version GIF version |
Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.) |
Ref | Expression |
---|---|
elsymdif | ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3753 | . . 3 ⊢ (𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) ↔ (𝐴 ∈ (𝐵 ∖ 𝐶) ∨ 𝐴 ∈ (𝐶 ∖ 𝐵))) | |
2 | eldif 3584 | . . . 4 ⊢ (𝐴 ∈ (𝐵 ∖ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶)) | |
3 | eldif 3584 | . . . 4 ⊢ (𝐴 ∈ (𝐶 ∖ 𝐵) ↔ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵)) | |
4 | 2, 3 | orbi12i 543 | . . 3 ⊢ ((𝐴 ∈ (𝐵 ∖ 𝐶) ∨ 𝐴 ∈ (𝐶 ∖ 𝐵)) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) |
5 | 1, 4 | bitri 264 | . 2 ⊢ (𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) |
6 | df-symdif 3844 | . . 3 ⊢ (𝐵 △ 𝐶) = ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵)) | |
7 | 6 | eleq2i 2693 | . 2 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ 𝐴 ∈ ((𝐵 ∖ 𝐶) ∪ (𝐶 ∖ 𝐵))) |
8 | xor 935 | . 2 ⊢ (¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶) ↔ ((𝐴 ∈ 𝐵 ∧ ¬ 𝐴 ∈ 𝐶) ∨ (𝐴 ∈ 𝐶 ∧ ¬ 𝐴 ∈ 𝐵))) | |
9 | 5, 7, 8 | 3bitr4i 292 | 1 ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 383 ∧ wa 384 ∈ wcel 1990 ∖ cdif 3571 ∪ cun 3572 △ csymdif 3843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-symdif 3844 |
This theorem is referenced by: elsymdifxor 3850 symdifass 3853 brsymdif 4711 |
Copyright terms: Public domain | W3C validator |