MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsymdif Structured version   Visualization version   GIF version

Theorem elsymdif 3849
Description: Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
elsymdif (𝐴 ∈ (𝐵𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))

Proof of Theorem elsymdif
StepHypRef Expression
1 elun 3753 . . 3 (𝐴 ∈ ((𝐵𝐶) ∪ (𝐶𝐵)) ↔ (𝐴 ∈ (𝐵𝐶) ∨ 𝐴 ∈ (𝐶𝐵)))
2 eldif 3584 . . . 4 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵 ∧ ¬ 𝐴𝐶))
3 eldif 3584 . . . 4 (𝐴 ∈ (𝐶𝐵) ↔ (𝐴𝐶 ∧ ¬ 𝐴𝐵))
42, 3orbi12i 543 . . 3 ((𝐴 ∈ (𝐵𝐶) ∨ 𝐴 ∈ (𝐶𝐵)) ↔ ((𝐴𝐵 ∧ ¬ 𝐴𝐶) ∨ (𝐴𝐶 ∧ ¬ 𝐴𝐵)))
51, 4bitri 264 . 2 (𝐴 ∈ ((𝐵𝐶) ∪ (𝐶𝐵)) ↔ ((𝐴𝐵 ∧ ¬ 𝐴𝐶) ∨ (𝐴𝐶 ∧ ¬ 𝐴𝐵)))
6 df-symdif 3844 . . 3 (𝐵𝐶) = ((𝐵𝐶) ∪ (𝐶𝐵))
76eleq2i 2693 . 2 (𝐴 ∈ (𝐵𝐶) ↔ 𝐴 ∈ ((𝐵𝐶) ∪ (𝐶𝐵)))
8 xor 935 . 2 (¬ (𝐴𝐵𝐴𝐶) ↔ ((𝐴𝐵 ∧ ¬ 𝐴𝐶) ∨ (𝐴𝐶 ∧ ¬ 𝐴𝐵)))
95, 7, 83bitr4i 292 1 (𝐴 ∈ (𝐵𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383  wa 384  wcel 1990  cdif 3571  cun 3572  csymdif 3843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-symdif 3844
This theorem is referenced by:  elsymdifxor  3850  symdifass  3853  brsymdif  4711
  Copyright terms: Public domain W3C validator