MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elsymdifxor Structured version   Visualization version   GIF version

Theorem elsymdifxor 3850
Description: Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020.)
Assertion
Ref Expression
elsymdifxor (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem elsymdifxor
StepHypRef Expression
1 xnor 1466 . . 3 ((𝐴𝐵𝐴𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))
21notbii 310 . 2 (¬ (𝐴𝐵𝐴𝐶) ↔ ¬ ¬ (𝐴𝐵𝐴𝐶))
3 elsymdif 3849 . 2 (𝐴 ∈ (𝐵𝐶) ↔ ¬ (𝐴𝐵𝐴𝐶))
4 notnotb 304 . 2 ((𝐴𝐵𝐴𝐶) ↔ ¬ ¬ (𝐴𝐵𝐴𝐶))
52, 3, 43bitr4i 292 1 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wxo 1464  wcel 1990  csymdif 3843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-xor 1465  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-symdif 3844
This theorem is referenced by:  dfsymdif2  3851
  Copyright terms: Public domain W3C validator