MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltopss Structured version   Visualization version   GIF version

Theorem eltopss 20712
Description: A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
Hypothesis
Ref Expression
1open.1 𝑋 = 𝐽
Assertion
Ref Expression
eltopss ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)

Proof of Theorem eltopss
StepHypRef Expression
1 elssuni 4467 . . 3 (𝐴𝐽𝐴 𝐽)
2 1open.1 . . 3 𝑋 = 𝐽
31, 2syl6sseqr 3652 . 2 (𝐴𝐽𝐴𝑋)
43adantl 482 1 ((𝐽 ∈ Top ∧ 𝐴𝐽) → 𝐴𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wss 3574   cuni 4436  Topctop 20698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-uni 4437
This theorem is referenced by:  riinopn  20713  opncld  20837  ntrval2  20855  ntrss3  20864  cmclsopn  20866  opncldf1  20888  opnneissb  20918  opnssneib  20919  opnneiss  20922  neitr  20984  restntr  20986  cnpnei  21068  imasnopn  21493  cnextcn  21871  utopreg  22056  opnregcld  32325  ptrecube  33409  poimirlem29  33438  poimir  33442
  Copyright terms: Public domain W3C validator