MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restntr Structured version   Visualization version   GIF version

Theorem restntr 20986
Description: An interior in a subspace topology. Willard in General Topology says that there is no analogue of restcls 20985 for interiors. In some sense, that is true. (Contributed by Jeff Hankins, 23-Jan-2010.) (Revised by Mario Carneiro, 15-Dec-2013.)
Hypotheses
Ref Expression
restcls.1 𝑋 = 𝐽
restcls.2 𝐾 = (𝐽t 𝑌)
Assertion
Ref Expression
restntr ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))

Proof of Theorem restntr
Dummy variables 𝑥 𝑜 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restcls.2 . . . . . . 7 𝐾 = (𝐽t 𝑌)
21fveq2i 6194 . . . . . 6 (int‘𝐾) = (int‘(𝐽t 𝑌))
32fveq1i 6192 . . . . 5 ((int‘𝐾)‘𝑆) = ((int‘(𝐽t 𝑌))‘𝑆)
4 restcls.1 . . . . . . . . . 10 𝑋 = 𝐽
54topopn 20711 . . . . . . . . 9 (𝐽 ∈ Top → 𝑋𝐽)
6 ssexg 4804 . . . . . . . . . 10 ((𝑌𝑋𝑋𝐽) → 𝑌 ∈ V)
76ancoms 469 . . . . . . . . 9 ((𝑋𝐽𝑌𝑋) → 𝑌 ∈ V)
85, 7sylan 488 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 ∈ V)
9 resttop 20964 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (𝐽t 𝑌) ∈ Top)
108, 9syldan 487 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝐽t 𝑌) ∈ Top)
11103adant3 1081 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝐽t 𝑌) ∈ Top)
124restuni 20966 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 = (𝐽t 𝑌))
1312sseq2d 3633 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑌𝑋) → (𝑆𝑌𝑆 (𝐽t 𝑌)))
1413biimp3a 1432 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆 (𝐽t 𝑌))
15 eqid 2622 . . . . . . 7 (𝐽t 𝑌) = (𝐽t 𝑌)
1615ntropn 20853 . . . . . 6 (((𝐽t 𝑌) ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → ((int‘(𝐽t 𝑌))‘𝑆) ∈ (𝐽t 𝑌))
1711, 14, 16syl2anc 693 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘(𝐽t 𝑌))‘𝑆) ∈ (𝐽t 𝑌))
183, 17syl5eqel 2705 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌))
19 simp1 1061 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐽 ∈ Top)
20 uniexg 6955 . . . . . . . . 9 (𝐽 ∈ Top → 𝐽 ∈ V)
214, 20syl5eqel 2705 . . . . . . . 8 (𝐽 ∈ Top → 𝑋 ∈ V)
22 ssexg 4804 . . . . . . . 8 ((𝑌𝑋𝑋 ∈ V) → 𝑌 ∈ V)
2321, 22sylan2 491 . . . . . . 7 ((𝑌𝑋𝐽 ∈ Top) → 𝑌 ∈ V)
2423ancoms 469 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋) → 𝑌 ∈ V)
25243adant3 1081 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 ∈ V)
26 elrest 16088 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ∈ V) → (((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌) ↔ ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌)))
2719, 25, 26syl2anc 693 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐾)‘𝑆) ∈ (𝐽t 𝑌) ↔ ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌)))
2818, 27mpbid 222 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ∃𝑜𝐽 ((int‘𝐾)‘𝑆) = (𝑜𝑌))
294eltopss 20712 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝑜𝐽) → 𝑜𝑋)
3029sseld 3602 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑜𝐽) → (𝑥𝑜𝑥𝑋))
3130adantrr 753 . . . . . . . . 9 ((𝐽 ∈ Top ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥𝑋))
32313ad2antl1 1223 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥𝑋))
33 eldif 3584 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) ↔ (𝑥𝑋 ∧ ¬ 𝑥𝑌))
3433simplbi2 655 . . . . . . . . 9 (𝑥𝑋 → (¬ 𝑥𝑌𝑥 ∈ (𝑋𝑌)))
3534orrd 393 . . . . . . . 8 (𝑥𝑋 → (𝑥𝑌𝑥 ∈ (𝑋𝑌)))
3632, 35syl6 35 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜 → (𝑥𝑌𝑥 ∈ (𝑋𝑌))))
37 elin 3796 . . . . . . . . . . 11 (𝑥 ∈ (𝑜𝑌) ↔ (𝑥𝑜𝑥𝑌))
38 eleq2 2690 . . . . . . . . . . . . 13 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑥 ∈ ((int‘𝐾)‘𝑆) ↔ 𝑥 ∈ (𝑜𝑌)))
39 elun1 3780 . . . . . . . . . . . . 13 (𝑥 ∈ ((int‘𝐾)‘𝑆) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
4038, 39syl6bir 244 . . . . . . . . . . . 12 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑥 ∈ (𝑜𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4140ad2antll 765 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥 ∈ (𝑜𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4237, 41syl5bir 233 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((𝑥𝑜𝑥𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4342expdimp 453 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → (𝑥𝑌𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
44 elun2 3781 . . . . . . . . . 10 (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
4544a1i 11 . . . . . . . . 9 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → (𝑥 ∈ (𝑋𝑌) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4643, 45jaod 395 . . . . . . . 8 ((((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) ∧ 𝑥𝑜) → ((𝑥𝑌𝑥 ∈ (𝑋𝑌)) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4746ex 450 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜 → ((𝑥𝑌𝑥 ∈ (𝑋𝑌)) → 𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))))
4836, 47mpdd 43 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑥𝑜𝑥 ∈ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌))))
4948ssrdv 3609 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑜 ⊆ (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)))
5011adantr 481 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝐽t 𝑌) ∈ Top)
511, 50syl5eqel 2705 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝐾 ∈ Top)
5214adantr 481 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑆 (𝐽t 𝑌))
531unieqi 4445 . . . . . . . . 9 𝐾 = (𝐽t 𝑌)
5453eqcomi 2631 . . . . . . . 8 (𝐽t 𝑌) = 𝐾
5554ntrss2 20861 . . . . . . 7 ((𝐾 ∈ Top ∧ 𝑆 (𝐽t 𝑌)) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
5651, 52, 55syl2anc 693 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((int‘𝐾)‘𝑆) ⊆ 𝑆)
57 unss1 3782 . . . . . 6 (((int‘𝐾)‘𝑆) ⊆ 𝑆 → (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)) ⊆ (𝑆 ∪ (𝑋𝑌)))
5856, 57syl 17 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (((int‘𝐾)‘𝑆) ∪ (𝑋𝑌)) ⊆ (𝑆 ∪ (𝑋𝑌)))
5949, 58sstrd 3613 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → 𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))
60 simpl1 1064 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝐽 ∈ Top)
61 sstr 3611 . . . . . . . . . . . . . 14 ((𝑆𝑌𝑌𝑋) → 𝑆𝑋)
6261ancoms 469 . . . . . . . . . . . . 13 ((𝑌𝑋𝑆𝑌) → 𝑆𝑋)
63623adant1 1079 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑆𝑋)
6463adantr 481 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑆𝑋)
65 difss 3737 . . . . . . . . . . 11 (𝑋𝑌) ⊆ 𝑋
66 unss 3787 . . . . . . . . . . 11 ((𝑆𝑋 ∧ (𝑋𝑌) ⊆ 𝑋) ↔ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
6764, 65, 66sylanblc 696 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
68 simprl 794 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜𝐽)
69 simprr 796 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))
704ssntr 20862 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))))
7160, 67, 68, 69, 70syl22anc 1327 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → 𝑜 ⊆ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))))
72 ssrin 3838 . . . . . . . . 9 (𝑜 ⊆ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) → (𝑜𝑌) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
7371, 72syl 17 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (𝑜𝑌) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
74 sseq1 3626 . . . . . . . 8 (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ↔ (𝑜𝑌) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
7573, 74syl5ibrcom 237 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)))) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
7675expr 643 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑜𝐽) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))))
7776com23 86 . . . . 5 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ 𝑜𝐽) → (((int‘𝐾)‘𝑆) = (𝑜𝑌) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))))
7877impr 649 . . . 4 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → (𝑜 ⊆ (𝑆 ∪ (𝑋𝑌)) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌)))
7959, 78mpd 15 . . 3 (((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) ∧ (𝑜𝐽 ∧ ((int‘𝐾)‘𝑆) = (𝑜𝑌))) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
8028, 79rexlimddv 3035 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) ⊆ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
811, 11syl5eqel 2705 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝐾 ∈ Top)
8283adant3 1081 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → 𝑌 ∈ V)
8363, 65, 66sylanblc 696 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋)
844ntropn 20853 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽)
8519, 83, 84syl2anc 693 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽)
86 elrestr 16089 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ∈ V ∧ ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∈ 𝐽) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ (𝐽t 𝑌))
8719, 82, 85, 86syl3anc 1326 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ (𝐽t 𝑌))
8887, 1syl6eleqr 2712 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ 𝐾)
894ntrss2 20861 . . . . . 6 ((𝐽 ∈ Top ∧ (𝑆 ∪ (𝑋𝑌)) ⊆ 𝑋) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ⊆ (𝑆 ∪ (𝑋𝑌)))
9019, 83, 89syl2anc 693 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ⊆ (𝑆 ∪ (𝑋𝑌)))
91 ssrin 3838 . . . . 5 (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ⊆ (𝑆 ∪ (𝑋𝑌)) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌))
9290, 91syl 17 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌))
93 elin 3796 . . . . . . 7 (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ↔ (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ∧ 𝑥𝑌))
94 elun 3753 . . . . . . . . 9 (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ↔ (𝑥𝑆𝑥 ∈ (𝑋𝑌)))
95 orcom 402 . . . . . . . . . 10 ((𝑥𝑆𝑥 ∈ (𝑋𝑌)) ↔ (𝑥 ∈ (𝑋𝑌) ∨ 𝑥𝑆))
96 df-or 385 . . . . . . . . . 10 ((𝑥 ∈ (𝑋𝑌) ∨ 𝑥𝑆) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
9795, 96bitri 264 . . . . . . . . 9 ((𝑥𝑆𝑥 ∈ (𝑋𝑌)) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
9894, 97bitri 264 . . . . . . . 8 (𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ↔ (¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆))
9998anbi1i 731 . . . . . . 7 ((𝑥 ∈ (𝑆 ∪ (𝑋𝑌)) ∧ 𝑥𝑌) ↔ ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌))
10093, 99bitri 264 . . . . . 6 (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ↔ ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌))
101 elndif 3734 . . . . . . . . 9 (𝑥𝑌 → ¬ 𝑥 ∈ (𝑋𝑌))
102 pm2.27 42 . . . . . . . . 9 𝑥 ∈ (𝑋𝑌) → ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) → 𝑥𝑆))
103101, 102syl 17 . . . . . . . 8 (𝑥𝑌 → ((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) → 𝑥𝑆))
104103impcom 446 . . . . . . 7 (((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌) → 𝑥𝑆)
105104a1i 11 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((¬ 𝑥 ∈ (𝑋𝑌) → 𝑥𝑆) ∧ 𝑥𝑌) → 𝑥𝑆))
106100, 105syl5bi 232 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (𝑥 ∈ ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) → 𝑥𝑆))
107106ssrdv 3609 . . . 4 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((𝑆 ∪ (𝑋𝑌)) ∩ 𝑌) ⊆ 𝑆)
10892, 107sstrd 3613 . . 3 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ 𝑆)
10954ssntr 20862 . . 3 (((𝐾 ∈ Top ∧ 𝑆 (𝐽t 𝑌)) ∧ ((((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ∈ 𝐾 ∧ (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ 𝑆)) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((int‘𝐾)‘𝑆))
11081, 14, 88, 108, 109syl22anc 1327 . 2 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌) ⊆ ((int‘𝐾)‘𝑆))
11180, 110eqssd 3620 1 ((𝐽 ∈ Top ∧ 𝑌𝑋𝑆𝑌) → ((int‘𝐾)‘𝑆) = (((int‘𝐽)‘(𝑆 ∪ (𝑋𝑌))) ∩ 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574   cuni 4436  cfv 5888  (class class class)co 6650  t crest 16081  Topctop 20698  intcnt 20821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-ntr 20824
This theorem is referenced by:  llycmpkgen2  21353  dvreslem  23673  dvres2lem  23674  dvaddbr  23701  dvmulbr  23702  dvcnvrelem2  23781  limciccioolb  39853  limcicciooub  39869  ioccncflimc  40098  icocncflimc  40102  cncfiooicclem1  40106  fourierdlem62  40385
  Copyright terms: Public domain W3C validator