MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltskg Structured version   Visualization version   GIF version

Theorem eltskg 9572
Description: Properties of a Tarski class. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
eltskg (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Distinct variable group:   𝑤,𝑇,𝑧
Allowed substitution hints:   𝑉(𝑧,𝑤)

Proof of Theorem eltskg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sseq2 3627 . . . . 5 (𝑦 = 𝑇 → (𝒫 𝑧𝑦 ↔ 𝒫 𝑧𝑇))
2 rexeq 3139 . . . . 5 (𝑦 = 𝑇 → (∃𝑤𝑦 𝒫 𝑧𝑤 ↔ ∃𝑤𝑇 𝒫 𝑧𝑤))
31, 2anbi12d 747 . . . 4 (𝑦 = 𝑇 → ((𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤)))
43raleqbi1dv 3146 . . 3 (𝑦 = 𝑇 → (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ↔ ∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤)))
5 pweq 4161 . . . 4 (𝑦 = 𝑇 → 𝒫 𝑦 = 𝒫 𝑇)
6 breq2 4657 . . . . 5 (𝑦 = 𝑇 → (𝑧𝑦𝑧𝑇))
7 eleq2 2690 . . . . 5 (𝑦 = 𝑇 → (𝑧𝑦𝑧𝑇))
86, 7orbi12d 746 . . . 4 (𝑦 = 𝑇 → ((𝑧𝑦𝑧𝑦) ↔ (𝑧𝑇𝑧𝑇)))
95, 8raleqbidv 3152 . . 3 (𝑦 = 𝑇 → (∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇)))
104, 9anbi12d 747 . 2 (𝑦 = 𝑇 → ((∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦)) ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
11 df-tsk 9571 . 2 Tarski = {𝑦 ∣ (∀𝑧𝑦 (𝒫 𝑧𝑦 ∧ ∃𝑤𝑦 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑦(𝑧𝑦𝑧𝑦))}
1210, 11elab2g 3353 1 (𝑇𝑉 → (𝑇 ∈ Tarski ↔ (∀𝑧𝑇 (𝒫 𝑧𝑇 ∧ ∃𝑤𝑇 𝒫 𝑧𝑤) ∧ ∀𝑧 ∈ 𝒫 𝑇(𝑧𝑇𝑧𝑇))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574  𝒫 cpw 4158   class class class wbr 4653  cen 7952  Tarskictsk 9570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-tsk 9571
This theorem is referenced by:  eltsk2g  9573  tskpwss  9574  tsken  9576  grothtsk  9657
  Copyright terms: Public domain W3C validator