![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbidv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
Ref | Expression |
---|---|
raleqbidv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
raleqbidv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
raleqbidv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleqbidv.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | raleqdv 3144 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
3 | raleqbidv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 3 | ralbidv 2986 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
5 | 2, 4 | bitrd 268 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∀wral 2912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 |
This theorem is referenced by: f12dfv 6529 f13dfv 6530 knatar 6607 ofrfval 6905 fmpt2x 7236 ovmptss 7258 marypha1lem 8339 supeq123d 8356 oieq1 8417 acneq 8866 isfin1a 9114 fpwwe2cbv 9452 fpwwe2lem2 9454 fpwwecbv 9466 fpwwelem 9467 eltskg 9572 elgrug 9614 cau3lem 14094 rlim 14226 ello1 14246 elo1 14257 caurcvg2 14408 caucvgb 14410 fsum2dlem 14501 fsumcom2 14505 fsumcom2OLD 14506 fprod2dlem 14710 fprodcom2 14714 fprodcom2OLD 14715 pcfac 15603 vdwpc 15684 rami 15719 prmgaplem7 15761 prdsval 16115 ismre 16250 isacs2 16314 acsfiel 16315 iscat 16333 iscatd 16334 catidex 16335 catideu 16336 cidfval 16337 cidval 16338 catlid 16344 catrid 16345 comfeq 16366 catpropd 16369 monfval 16392 issubc 16495 fullsubc 16510 isfunc 16524 funcpropd 16560 isfull 16570 isfth 16574 fthpropd 16581 natfval 16606 initoval 16647 termoval 16648 isposd 16955 lubfval 16978 glbfval 16991 ismgm 17243 issstrmgm 17252 grpidval 17260 gsumvalx 17270 gsumpropd 17272 gsumress 17276 issgrp 17285 ismnddef 17296 ismndd 17313 mndpropd 17316 ismhm 17337 resmhm 17359 isgrp 17428 grppropd 17437 isgrpd2e 17441 isnsg 17623 nmznsg 17638 isghm 17660 isga 17724 subgga 17733 gsmsymgrfix 17848 gsmsymgreq 17852 gexval 17993 ispgp 18007 isslw 18023 sylow2blem2 18036 efgval 18130 efgi 18132 efgsdm 18143 cmnpropd 18202 iscmnd 18205 submcmn2 18244 gsumzaddlem 18321 dmdprd 18397 dprdcntz 18407 issrg 18507 isring 18551 ringpropd 18582 isirred 18699 abvfval 18818 abvpropd 18842 islmod 18867 islmodd 18869 lmodprop2d 18925 lssset 18934 islmhm 19027 reslmhm 19052 lmhmpropd 19073 islbs 19076 rrgval 19287 isdomn 19294 isassa 19315 isassad 19323 assapropd 19327 ltbval 19471 opsrval 19474 psgndiflemA 19947 isphl 19973 islindf 20151 islindf2 20153 lsslindf 20169 dmatval 20298 dmatcrng 20308 scmatcrng 20327 cpmat 20514 istopg 20700 restbas 20962 ordtrest2 21008 cnfval 21037 cnpfval 21038 ist0 21124 ishaus 21126 iscnrm 21127 isnrm 21139 ist0-2 21148 ishaus2 21155 nrmsep3 21159 iscmp 21191 is1stc 21244 isptfin 21319 islocfin 21320 kgenval 21338 kgencn2 21360 txbas 21370 ptval 21373 dfac14 21421 isfil 21651 isufil 21707 isufl 21717 flfcntr 21847 ucnval 22081 iscusp 22103 prdsxmslem2 22334 tngngp3 22460 isnlm 22479 nmofval 22518 lebnumii 22765 iscau4 23077 iscmet 23082 iscmet3lem1 23089 iscmet3 23091 equivcmet 23114 ulmcaulem 24148 ulmcau 24149 fsumdvdscom 24911 dchrisumlem3 25180 pntibndlem2 25280 pntibnd 25282 pntlemp 25299 ostth2lem2 25323 trgcgrg 25410 tgcgr4 25426 isismt 25429 nbgr2vtx1edg 26246 nbuhgr2vtx1edgb 26248 uvtxaval 26287 uvtxael 26288 uvtxael1 26296 uvtxusgrel 26304 iscplgr 26310 cusgredg 26320 cplgr3v 26331 cplgrop 26333 usgredgsscusgredg 26355 isrgr 26455 isewlk 26498 iswlk 26506 iswwlks 26728 wlkiswwlks2 26761 isclwwlks 26880 clwlkclwwlklem1 26900 isconngr 27049 isconngr1 27050 1conngr 27054 isfrgr 27122 rspc2vd 27129 frgr1v 27135 nfrgr2v 27136 frgr3v 27139 1vwmgr 27140 3vfriswmgr 27142 3cyclfrgrrn1 27149 n4cyclfrgr 27155 isplig 27328 gidval 27366 vciOLD 27416 isvclem 27432 isnvlem 27465 lnoval 27607 ajfval 27664 isphg 27672 minvecolem3 27732 htth 27775 ressprs 29655 isslmd 29755 resv1r 29837 iscref 29911 ordtrest2NEW 29969 fmcncfil 29977 issiga 30174 isrnsigaOLD 30175 isrnsiga 30176 isldsys 30219 ismeas 30262 carsgval 30365 issibf 30395 sitgfval 30403 signstfvneq0 30649 istrkg2d 30744 ispconn 31205 issconn 31208 txpconn 31214 cvxpconn 31224 cvmscbv 31240 iscvm 31241 cvmsdisj 31252 cvmsss2 31256 snmlval 31313 elmrsubrn 31417 ismfs 31446 mclsval 31460 fwddifnval 32270 bj-ismoore 33059 poimirlem28 33437 cover2g 33509 seqpo 33543 incsequz2 33545 caushft 33557 ismtyval 33599 isass 33645 isexid 33646 elghomlem1OLD 33684 isrngo 33696 isrngod 33697 isgrpda 33754 rngohomval 33763 iscom2 33794 idlval 33812 pridlval 33832 maxidlval 33838 lflset 34346 islfld 34349 isopos 34467 isoml 34525 isatl 34586 iscvlat 34610 ishlat1 34639 psubspset 35030 lautset 35368 pautsetN 35384 ldilfset 35394 ltrnfset 35403 dilfsetN 35439 trnfsetN 35442 trnsetN 35443 trlfset 35447 tendofset 36046 tendoset 36047 dihffval 36519 lpolsetN 36771 hdmapfval 37119 hgmapfval 37178 aomclem8 37631 islnm 37647 sdrgacs 37771 clsk1independent 38344 gneispace2 38430 gneispaceel2 38442 gneispacess2 38444 ioodvbdlimc1lem1 40146 ioodvbdlimc1lem2 40147 ioodvbdlimc2lem 40149 issal 40534 isome 40708 iccpartiltu 41358 iccelpart 41369 isupwlk 41717 mgmpropd 41775 ismgmd 41776 ismgmhm 41783 resmgmhm 41798 iscllaw 41825 iscomlaw 41826 isasslaw 41828 isrng 41876 c0snmgmhm 41914 zlidlring 41928 uzlidlring 41929 dmatALTval 42189 islininds 42235 lindslinindsimp2 42252 ldepsnlinc 42297 elbigo 42345 |
Copyright terms: Public domain | W3C validator |