| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elunif | Structured version Visualization version GIF version | ||
| Description: A version of eluni 4439 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| elunif.1 | ⊢ Ⅎ𝑥𝐴 |
| elunif.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| elunif | ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 4439 | . 2 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)) | |
| 2 | elunif.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2764 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 4 | 2, 3 | nfel 2777 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ 𝑦 |
| 5 | elunif.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 6 | 3, 5 | nfel 2777 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 7 | 4, 6 | nfan 1828 | . . 3 ⊢ Ⅎ𝑥(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) |
| 8 | nfv 1843 | . . 3 ⊢ Ⅎ𝑦(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵) | |
| 9 | eleq2 2690 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑥)) | |
| 10 | eleq1 2689 | . . . 4 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝐵 ↔ 𝑥 ∈ 𝐵)) | |
| 11 | 9, 10 | anbi12d 747 | . . 3 ⊢ (𝑦 = 𝑥 → ((𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵))) |
| 12 | 7, 8, 11 | cbvex 2272 | . 2 ⊢ (∃𝑦(𝐴 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| 13 | 1, 12 | bitri 264 | 1 ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ 𝑥 ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∃wex 1704 ∈ wcel 1990 Ⅎwnfc 2751 ∪ cuni 4436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-uni 4437 |
| This theorem is referenced by: eluni2f 39286 stoweidlem46 40263 stoweidlem57 40274 |
| Copyright terms: Public domain | W3C validator |