Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elzdif0 Structured version   Visualization version   GIF version

Theorem elzdif0 30024
Description: Lemma for qqhval2 30026. (Contributed by Thierry Arnoux, 29-Oct-2017.)
Assertion
Ref Expression
elzdif0 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))

Proof of Theorem elzdif0
StepHypRef Expression
1 eldifi 3732 . . 3 (𝑀 ∈ (ℤ ∖ {0}) → 𝑀 ∈ ℤ)
2 eldifn 3733 . . 3 (𝑀 ∈ (ℤ ∖ {0}) → ¬ 𝑀 ∈ {0})
3 elsng 4191 . . . . 5 (𝑀 ∈ ℤ → (𝑀 ∈ {0} ↔ 𝑀 = 0))
43notbid 308 . . . 4 (𝑀 ∈ ℤ → (¬ 𝑀 ∈ {0} ↔ ¬ 𝑀 = 0))
54biimpa 501 . . 3 ((𝑀 ∈ ℤ ∧ ¬ 𝑀 ∈ {0}) → ¬ 𝑀 = 0)
61, 2, 5syl2anc 693 . 2 (𝑀 ∈ (ℤ ∖ {0}) → ¬ 𝑀 = 0)
7 elz 11379 . . . . 5 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
81, 7sylib 208 . . . 4 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℝ ∧ (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
98simprd 479 . . 3 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))
10 3orass 1040 . . 3 ((𝑀 = 0 ∨ 𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ) ↔ (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
119, 10sylib 208 . 2 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
12 orel1 397 . 2 𝑀 = 0 → ((𝑀 = 0 ∨ (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ)))
136, 11, 12sylc 65 1 (𝑀 ∈ (ℤ ∖ {0}) → (𝑀 ∈ ℕ ∨ -𝑀 ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3o 1036   = wceq 1483  wcel 1990  cdif 3571  {csn 4177  cr 9935  0cc0 9936  -cneg 10267  cn 11020  cz 11377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-neg 10269  df-z 11378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator