MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en3lplem1 Structured version   Visualization version   GIF version

Theorem en3lplem1 8511
Description: Lemma for en3lp 8513. (Contributed by Alan Sare, 28-Oct-2011.)
Assertion
Ref Expression
en3lplem1 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem en3lplem1
StepHypRef Expression
1 simp3 1063 . . 3 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶𝐴)
2 eleq2 2690 . . 3 (𝑥 = 𝐴 → (𝐶𝑥𝐶𝐴))
31, 2syl5ibrcom 237 . 2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴𝐶𝑥))
4 tpid3g 4305 . . . . 5 (𝐶𝐴𝐶 ∈ {𝐴, 𝐵, 𝐶})
543ad2ant3 1084 . . . 4 ((𝐴𝐵𝐵𝐶𝐶𝐴) → 𝐶 ∈ {𝐴, 𝐵, 𝐶})
6 inelcm 4032 . . . 4 ((𝐶𝑥𝐶 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)
75, 6sylan2 491 . . 3 ((𝐶𝑥 ∧ (𝐴𝐵𝐵𝐶𝐶𝐴)) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)
87expcom 451 . 2 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝐶𝑥 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
93, 8syld 47 1 ((𝐴𝐵𝐵𝐶𝐶𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1483  wcel 1990  wne 2794  cin 3573  c0 3915  {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-nul 3916  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by:  en3lplem2  8512
  Copyright terms: Public domain W3C validator