![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en3lplem1 | Structured version Visualization version GIF version |
Description: Lemma for en3lp 8513. (Contributed by Alan Sare, 28-Oct-2011.) |
Ref | Expression |
---|---|
en3lplem1 | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1063 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ 𝐴) | |
2 | eleq2 2690 | . . 3 ⊢ (𝑥 = 𝐴 → (𝐶 ∈ 𝑥 ↔ 𝐶 ∈ 𝐴)) | |
3 | 1, 2 | syl5ibrcom 237 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → 𝐶 ∈ 𝑥)) |
4 | tpid3g 4305 | . . . . 5 ⊢ (𝐶 ∈ 𝐴 → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) | |
5 | 4 | 3ad2ant3 1084 | . . . 4 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ {𝐴, 𝐵, 𝐶}) |
6 | inelcm 4032 | . . . 4 ⊢ ((𝐶 ∈ 𝑥 ∧ 𝐶 ∈ {𝐴, 𝐵, 𝐶}) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) | |
7 | 5, 6 | sylan2 491 | . . 3 ⊢ ((𝐶 ∈ 𝑥 ∧ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴)) → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅) |
8 | 7 | expcom 451 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝐶 ∈ 𝑥 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
9 | 3, 8 | syld 47 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∩ cin 3573 ∅c0 3915 {ctp 4181 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-nul 3916 df-sn 4178 df-pr 4180 df-tp 4182 |
This theorem is referenced by: en3lplem2 8512 |
Copyright terms: Public domain | W3C validator |