MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en2lp Structured version   Visualization version   GIF version

Theorem en2lp 8510
Description: No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.)
Assertion
Ref Expression
en2lp ¬ (𝐴𝐵𝐵𝐴)

Proof of Theorem en2lp
StepHypRef Expression
1 zfregfr 8509 . . 3 E Fr V
2 efrn2lp 5096 . . 3 (( E Fr V ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V)) → ¬ (𝐴𝐵𝐵𝐴))
31, 2mpan 706 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝐵𝐵𝐴))
4 elex 3212 . . . 4 (𝐴𝐵𝐴 ∈ V)
5 elex 3212 . . . 4 (𝐵𝐴𝐵 ∈ V)
64, 5anim12i 590 . . 3 ((𝐴𝐵𝐵𝐴) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
76con3i 150 . 2 (¬ (𝐴 ∈ V ∧ 𝐵 ∈ V) → ¬ (𝐴𝐵𝐵𝐴))
83, 7pm2.61i 176 1 ¬ (𝐴𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384  wcel 1990  Vcvv 3200   E cep 5028   Fr wfr 5070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-eprel 5029  df-fr 5073
This theorem is referenced by:  preleq  8514  suc11reg  8516  axunndlem1  9417  axacndlem5  9433  tratrb  38746  tratrbVD  39097
  Copyright terms: Public domain W3C validator