![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqneltri | Structured version Visualization version GIF version |
Description: If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
eqneltri.1 | ⊢ 𝐴 = 𝐵 |
eqneltri.2 | ⊢ ¬ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
eqneltri | ⊢ ¬ 𝐴 ∈ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltri.2 | . 2 ⊢ ¬ 𝐵 ∈ 𝐶 | |
2 | eqneltri.1 | . . 3 ⊢ 𝐴 = 𝐵 | |
3 | 2 | eleq1i 2692 | . 2 ⊢ (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶) |
4 | 1, 3 | mtbir 313 | 1 ⊢ ¬ 𝐴 ∈ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1483 ∈ wcel 1990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-clel 2618 |
This theorem is referenced by: eliuniincex 39292 eliincex 39293 salgencntex 40561 |
Copyright terms: Public domain | W3C validator |