![]() |
Metamath
Proof Explorer Theorem List (p. 393 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nnxrd 39201 | A natural number is an extended real. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ*) | ||
Theorem | 3adantll2 39202 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜂 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | 3adantll3 39203 | Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜂) ∧ 𝜒) ∧ 𝜃) → 𝜏) | ||
Theorem | ssnel 39204 | If not element of a set, then not element of a subset. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐵) → ¬ 𝐶 ∈ 𝐴) | ||
Theorem | jcn 39205 | Inference joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → ¬ (𝜓 → 𝜒)) | ||
Theorem | elabrexg 39206* | Elementhood in an image set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | ||
Theorem | ifeq123d 39207 | Equality deduction for conditional operator. (Contributed by Glauco Siliprandi, 11-Dec-2019.) AV: This theorem already exists as ifbieq12d 4113. TODO (NM): Please replace the usage of this theorem by ifbieq12d 4113 then delete this theorem. (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜒, 𝐵, 𝐷)) | ||
Theorem | sncldre 39208 | A singleton is closed w.r.t. the standard topology on the reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ ℝ → {𝐴} ∈ (Clsd‘(topGen‘ran (,)))) | ||
Theorem | n0p 39209 | A polynomial with a nonzero coefficient is not the zero polynomial. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ ((𝑃 ∈ (Poly‘ℤ) ∧ 𝑁 ∈ ℕ0 ∧ ((coeff‘𝑃)‘𝑁) ≠ 0) → 𝑃 ≠ 0𝑝) | ||
Theorem | pm2.65ni 39210 | Inference rule for proof by contradiction. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ (¬ 𝜑 → 𝜓) & ⊢ (¬ 𝜑 → ¬ 𝜓) ⇒ ⊢ 𝜑 | ||
Theorem | pwssfi 39211 | Every element of the power set of 𝐴 is finite if and only if 𝐴 is finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Fin ↔ 𝒫 𝐴 ⊆ Fin)) | ||
Theorem | iuneq2df 39212 | Equality deduction for indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 𝐶) | ||
Theorem | nnfoctb 39213* | There exists a mapping from ℕ onto any (nonempty) countable set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓 𝑓:ℕ–onto→𝐴) | ||
Theorem | ssinss1d 39214 | Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
Theorem | 0un 39215 | The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (∅ ∪ 𝐴) = 𝐴 | ||
Theorem | elpwinss 39216 | An element of the powerset of 𝐵 intersected with anything, is a subset of 𝐵. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ∈ (𝒫 𝐵 ∩ 𝐶) → 𝐴 ⊆ 𝐵) | ||
Theorem | unidmex 39217 | If 𝐹 is a set, then ∪ dom 𝐹 is a set (common case). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐹 ∈ 𝑉) & ⊢ 𝑋 = ∪ dom 𝐹 ⇒ ⊢ (𝜑 → 𝑋 ∈ V) | ||
Theorem | ndisj2 39218* | A non disjointness condition. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) ⇒ ⊢ (¬ Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) | ||
Theorem | zenom 39219 | The set of integer numbers is equinumerous to omega (the set of finite ordinal numbers). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ℤ ≈ ω | ||
Theorem | rexsngf 39220* | Restricted existential quantification over a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) | ||
Theorem | uzwo4 39221* | Well-ordering principle: any nonempty subset of an upper set of integers has the least element. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑗𝜓 & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝑆 ⊆ (ℤ≥‘𝑀) ∧ ∃𝑗 ∈ 𝑆 𝜑) → ∃𝑗 ∈ 𝑆 (𝜑 ∧ ∀𝑘 ∈ 𝑆 (𝑘 < 𝑗 → ¬ 𝜓))) | ||
Theorem | unisn0 39222 | The union of the singleton of the empty set is the empty set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ∪ {∅} = ∅ | ||
Theorem | ssin0 39223 | If two classes are disjoint, two respective subclasses are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (((𝐴 ∩ 𝐵) = ∅ ∧ 𝐶 ⊆ 𝐴 ∧ 𝐷 ⊆ 𝐵) → (𝐶 ∩ 𝐷) = ∅) | ||
Theorem | inabs3 39224 | Absorption law for intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ 𝐶)) | ||
Theorem | pwpwuni 39225 | Relationship between power class and union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵)) | ||
Theorem | disjiun2 39226* | In a disjoint collection, an indexed union is disjoint from an additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ (𝐴 ∖ 𝐶)) & ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐸) ⇒ ⊢ (𝜑 → (∪ 𝑥 ∈ 𝐶 𝐵 ∩ 𝐸) = ∅) | ||
Theorem | 0pwfi 39227 | The empty set is in any power set, and it's finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ∅ ∈ (𝒫 𝐴 ∩ Fin) | ||
Theorem | ssinss2d 39228 | Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
Theorem | zct 39229 | The set of integer numbers is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ℤ ≼ ω | ||
Theorem | iunxsngf2 39230* | A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝐶 & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑉 → ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶) | ||
Theorem | pwfin0 39231 | A finite set always belongs to a power class. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝒫 𝐴 ∩ Fin) ≠ ∅ | ||
Theorem | uzct 39232 | An upper integer set is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝑍 = (ℤ≥‘𝑁) ⇒ ⊢ 𝑍 ≼ ω | ||
Theorem | iunxsnf 39233* | A singleton index picks out an instance of an indexed union's argument. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝐶 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ ∪ 𝑥 ∈ {𝐴}𝐵 = 𝐶 | ||
Theorem | fiiuncl 39234* | If a set is closed under the union of two sets, then it is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷 ∧ 𝑧 ∈ 𝐷) → (𝑦 ∪ 𝑧) ∈ 𝐷) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝐷) | ||
Theorem | iunp1 39235* | The addition of the next set to a union indexed by a finite set of sequential integers. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑘𝐵 & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ (𝑘 = (𝑁 + 1) → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ (𝑀...(𝑁 + 1))𝐴 = (∪ 𝑘 ∈ (𝑀...𝑁)𝐴 ∪ 𝐵)) | ||
Theorem | fiunicl 39236* | If a set is closed under the union of two sets, then it is closed under finite union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥 ∪ 𝑦) ∈ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐴 ≠ ∅) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ 𝐴) | ||
Theorem | ixpeq2d 39237 | Equality theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 = X𝑥 ∈ 𝐴 𝐶) | ||
Theorem | disjxp1 39238* | The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 (𝐵 × 𝐶)) | ||
Theorem | disjsnxp 39239* | The sets in the cartesian product of singletons with other sets, are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Disj 𝑗 ∈ 𝐴 ({𝑗} × 𝐵) | ||
Theorem | eliind 39240* | Membership in indexed intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶) & ⊢ (𝜑 → 𝐾 ∈ 𝐵) & ⊢ (𝑥 = 𝐾 → (𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐷)) ⇒ ⊢ (𝜑 → 𝐴 ∈ 𝐷) | ||
Theorem | rspcef 39241 | Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) | ||
Theorem | inn0f 39242 | A non-empty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | ixpssmapc 39243* | An infinite Cartesian product is a subset of set exponentiation. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ (𝐶 ↑𝑚 𝐴)) | ||
Theorem | inn0 39244* | A non-empty intersection. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ ((𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | ||
Theorem | elintd 39245* | Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) | ||
Theorem | eqneltri 39246 | If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ 𝐴 = 𝐵 & ⊢ ¬ 𝐵 ∈ 𝐶 ⇒ ⊢ ¬ 𝐴 ∈ 𝐶 | ||
Theorem | ssdf 39247* | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | brneqtrd 39248 | Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → ¬ 𝐴𝑅𝐵) & ⊢ (𝜑 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) | ||
Theorem | ssnct 39249 | A set containing an uncountable set is itself uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → ¬ 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 ≼ ω) | ||
Theorem | ssuniint 39250* | Sufficient condition for being a subclass of the union of an intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ⊆ ∪ ∩ 𝐵) | ||
Theorem | elintdv 39251* | Membership in class intersection. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝑥) ⇒ ⊢ (𝜑 → 𝐴 ∈ ∩ 𝐵) | ||
Theorem | ssd 39252* | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | ralimralim 39253 | Introducing any antecedent in a restricted universal quantification. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜑)) | ||
Theorem | snelmap 39254 | Membership of the element in the range of a constant map. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ (𝜑 → (𝐴 × {𝑥}) ∈ (𝐵 ↑𝑚 𝐴)) ⇒ ⊢ (𝜑 → 𝑥 ∈ 𝐵) | ||
Theorem | dfcleqf 39255 | Equality connective between classes. Same as dfcleq 2616, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
Theorem | xrnmnfpnf 39256 | An extended real that is neither real nor minus infinity, is plus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ ℝ*) & ⊢ (𝜑 → ¬ 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≠ -∞) ⇒ ⊢ (𝜑 → 𝐴 = +∞) | ||
Theorem | nelrnmpt 39257* | Non-membership in the range of a function in maps-to notaion. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ≠ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐶 ∈ ran 𝐹) | ||
Theorem | snn0d 39258 | The singleton of a set is not empty. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → {𝐴} ≠ ∅) | ||
Theorem | iuneq1i 39259* | Equality theorem for indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶 | ||
Theorem | nssrex 39260* | Negation of subclass relationship. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (¬ 𝐴 ⊆ 𝐵 ↔ ∃𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵) | ||
Theorem | nelpr2 39261 | If a class is not an element of an unordered pair, it is not the second listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐶) | ||
Theorem | nelpr1 39262 | If a class is not an element of an unordered pair, it is not the first listed element. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐴 ∈ {𝐵, 𝐶}) ⇒ ⊢ (𝜑 → 𝐴 ≠ 𝐵) | ||
Theorem | iunssf 39263 | Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝐶 ⇒ ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
Theorem | ssinc 39264* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘𝑚) ⊆ (𝐹‘(𝑚 + 1))) ⇒ ⊢ (𝜑 → (𝐹‘𝑀) ⊆ (𝐹‘𝑁)) | ||
Theorem | ssdec 39265* | Inclusion relation for a monotonic sequence of sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑚 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑚 + 1)) ⊆ (𝐹‘𝑚)) ⇒ ⊢ (𝜑 → (𝐹‘𝑁) ⊆ (𝐹‘𝑀)) | ||
Theorem | elixpconstg 39266* | Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ 𝐹:𝐴⟶𝐵)) | ||
Theorem | iineq1d 39267* | Equality theorem for indexed intersection. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | metpsmet 39268 | A metric is a pseudometric. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (PsMet‘𝑋)) | ||
Theorem | ixpssixp 39269 | Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | ||
Theorem | ballss3 39270* | A sufficient condition for a ball being a subset. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐷 ∈ (PsMet‘𝑋)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ 𝐴) | ||
Theorem | iunssd 39271* | Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
Theorem | iunincfi 39272* | Given a sequence of increasing sets, the union of a finite subsequence, is its last element. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) & ⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) ⇒ ⊢ (𝜑 → ∪ 𝑛 ∈ (𝑀...𝑁)(𝐹‘𝑛) = (𝐹‘𝑁)) | ||
Theorem | nsstr 39273 | If it's not a subclass, it's not a subclass of a smaller one. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ ((¬ 𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐵) → ¬ 𝐴 ⊆ 𝐶) | ||
Theorem | rabbida 39274 | Equivalent wff's yield equal restricted class abstractions (deduction rule). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | rexanuz3 39275* | Combine two different upper integer properties into one, for a single integer. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑗𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜒) & ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝜓) & ⊢ (𝑘 = 𝑗 → (𝜒 ↔ 𝜃)) & ⊢ (𝑘 = 𝑗 → (𝜓 ↔ 𝜏)) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝜃 ∧ 𝜏)) | ||
Theorem | rabeqd 39276* | Equality theorem for restricted class abstractions. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} = {𝑥 ∈ 𝐵 ∣ 𝜒}) | ||
Theorem | cbvmpt22 39277* | Rule to change the second bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑤𝐴 & ⊢ Ⅎ𝑤𝐶 & ⊢ Ⅎ𝑦𝐸 & ⊢ (𝑦 = 𝑤 → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑤 ∈ 𝐵 ↦ 𝐸) | ||
Theorem | cbvmpt21 39278* | Rule to change the first bound variable in a maps-to function, using implicit substitution. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑧𝐵 & ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑥𝐸 & ⊢ (𝑥 = 𝑧 → 𝐶 = 𝐸) ⇒ ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐸) | ||
Theorem | eliuniin 39279* | Indexed union of indexed intersections. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐴 = ∪ 𝑥 ∈ 𝐵 ∩ 𝑦 ∈ 𝐶 𝐷 ⇒ ⊢ (𝑍 ∈ 𝑉 → (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷)) | ||
Theorem | ssabf 39280 | Subclass of a class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ⊆ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | ||
Theorem | uniexd 39281 | Deduction version of the ZF Axiom of Union in class notation. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∪ 𝐴 ∈ V) | ||
Theorem | pwexd 39282 | Deduction version of the power set axiom. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝒫 𝐴 ∈ V) | ||
Theorem | pssnssi 39283 | A proper subclass does not include the other class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐴 ⊊ 𝐵 ⇒ ⊢ ¬ 𝐵 ⊆ 𝐴 | ||
Theorem | rabidim2 39284 | Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜑} → 𝜑) | ||
Theorem | xpexd 39285 | The Cartesian product of two sets is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) | ||
Theorem | eluni2f 39286* | Membership in class union. Restricted quantifier version. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ∈ ∪ 𝐵 ↔ ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) | ||
Theorem | eliin2f 39287* | Membership in indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | ||
Theorem | nssd 39288 | Negation of subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐴 ⊆ 𝐵) | ||
Theorem | iineq12dv 39289* | Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) | ||
Theorem | supxrcld 39290 | The supremum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ*) ⇒ ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ∈ ℝ*) | ||
Theorem | elrestd 39291 | A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐽 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐽) & ⊢ 𝐴 = (𝑋 ∩ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) | ||
Theorem | eliuniincex 39292* | Counterexample to show that the additional conditions in eliuniin 39279 and eliuniin2 39303 are actually needed. Notice that the definition of 𝐴 is not even needed (it can be any class). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐵 = {∅} & ⊢ 𝐶 = ∅ & ⊢ 𝐷 = ∅ & ⊢ 𝑍 = V ⇒ ⊢ ¬ (𝑍 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐶 𝑍 ∈ 𝐷) | ||
Theorem | eliincex 39293* | Counterexample to show that the additional conditions in eliin 4525 and eliin2 39299 are actually needed. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐴 = V & ⊢ 𝐵 = ∅ ⇒ ⊢ ¬ (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) | ||
Theorem | eliinid 39294* | Membership in an indexed intersection implies membership in any intersected set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ ((𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ∧ 𝑥 ∈ 𝐵) → 𝐴 ∈ 𝐶) | ||
Theorem | abssf 39295 | Class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ ({𝑥 ∣ 𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑 → 𝑥 ∈ 𝐴)) | ||
Theorem | fexd 39296 | If the domain of a mapping is a set, the function is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐹 ∈ V) | ||
Theorem | supxrubd 39297 | A member of a set of extended reals is less than or equal to the set's supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ⊆ ℝ*) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ 𝑆 = sup(𝐴, ℝ*, < ) ⇒ ⊢ (𝜑 → 𝐵 ≤ 𝑆) | ||
Theorem | ssrabf 39298 | Subclass of a restricted class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | eliin2 39299* | Membership in indexed intersection. See eliincex 39293 for a counterexample showing that the precondition 𝐵 ≠ ∅ cannot be simply dropped. eliin 4525 uses an alternative precondition (and it doesn't have a disjoint var constraint between 𝐵 and 𝑥; see eliin2f 39287). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) | ||
Theorem | ssrab2f 39300 | Subclass relation for a restricted class. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} ⊆ 𝐴 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |