| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqoreldif | Structured version Visualization version GIF version | ||
| Description: An element of a set is either equal to another element of the set or a member of the difference of the set and the singleton containing the other element. (Contributed by AV, 25-Aug-2020.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| eqoreldif | ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ 𝐶 ↔ (𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵})))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ 𝐶) | |
| 2 | elsni 4194 | . . . . . . 7 ⊢ (𝐴 ∈ {𝐵} → 𝐴 = 𝐵) | |
| 3 | 2 | con3i 150 | . . . . . 6 ⊢ (¬ 𝐴 = 𝐵 → ¬ 𝐴 ∈ {𝐵}) |
| 4 | 3 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵) → ¬ 𝐴 ∈ {𝐵}) |
| 5 | 1, 4 | eldifd 3585 | . . . 4 ⊢ ((𝐴 ∈ 𝐶 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ∈ (𝐶 ∖ {𝐵})) |
| 6 | 5 | ex 450 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (¬ 𝐴 = 𝐵 → 𝐴 ∈ (𝐶 ∖ {𝐵}))) |
| 7 | 6 | orrd 393 | . 2 ⊢ (𝐴 ∈ 𝐶 → (𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵}))) |
| 8 | eleq1a 2696 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 = 𝐵 → 𝐴 ∈ 𝐶)) | |
| 9 | eldifi 3732 | . . . 4 ⊢ (𝐴 ∈ (𝐶 ∖ {𝐵}) → 𝐴 ∈ 𝐶) | |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ (𝐶 ∖ {𝐵}) → 𝐴 ∈ 𝐶)) |
| 11 | 8, 10 | jaod 395 | . 2 ⊢ (𝐵 ∈ 𝐶 → ((𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵})) → 𝐴 ∈ 𝐶)) |
| 12 | 7, 11 | impbid2 216 | 1 ⊢ (𝐵 ∈ 𝐶 → (𝐴 ∈ 𝐶 ↔ (𝐴 = 𝐵 ∨ 𝐴 ∈ (𝐶 ∖ {𝐵})))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∖ cdif 3571 {csn 4177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-sn 4178 |
| This theorem is referenced by: lcmfunsnlem2 15353 |
| Copyright terms: Public domain | W3C validator |