MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqoreldif Structured version   Visualization version   Unicode version

Theorem eqoreldif 4225
Description: An element of a set is either equal to another element of the set or a member of the difference of the set and the singleton containing the other element. (Contributed by AV, 25-Aug-2020.) (Proof shortened by JJ, 23-Jul-2021.)
Assertion
Ref Expression
eqoreldif  |-  ( B  e.  C  ->  ( A  e.  C  <->  ( A  =  B  \/  A  e.  ( C  \  { B } ) ) ) )

Proof of Theorem eqoreldif
StepHypRef Expression
1 simpl 473 . . . . 5  |-  ( ( A  e.  C  /\  -.  A  =  B
)  ->  A  e.  C )
2 elsni 4194 . . . . . . 7  |-  ( A  e.  { B }  ->  A  =  B )
32con3i 150 . . . . . 6  |-  ( -.  A  =  B  ->  -.  A  e.  { B } )
43adantl 482 . . . . 5  |-  ( ( A  e.  C  /\  -.  A  =  B
)  ->  -.  A  e.  { B } )
51, 4eldifd 3585 . . . 4  |-  ( ( A  e.  C  /\  -.  A  =  B
)  ->  A  e.  ( C  \  { B } ) )
65ex 450 . . 3  |-  ( A  e.  C  ->  ( -.  A  =  B  ->  A  e.  ( C 
\  { B }
) ) )
76orrd 393 . 2  |-  ( A  e.  C  ->  ( A  =  B  \/  A  e.  ( C  \  { B } ) ) )
8 eleq1a 2696 . . 3  |-  ( B  e.  C  ->  ( A  =  B  ->  A  e.  C ) )
9 eldifi 3732 . . . 4  |-  ( A  e.  ( C  \  { B } )  ->  A  e.  C )
109a1i 11 . . 3  |-  ( B  e.  C  ->  ( A  e.  ( C  \  { B } )  ->  A  e.  C
) )
118, 10jaod 395 . 2  |-  ( B  e.  C  ->  (
( A  =  B  \/  A  e.  ( C  \  { B } ) )  ->  A  e.  C )
)
127, 11impbid2 216 1  |-  ( B  e.  C  ->  ( A  e.  C  <->  ( A  =  B  \/  A  e.  ( C  \  { B } ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    \ cdif 3571   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-sn 4178
This theorem is referenced by:  lcmfunsnlem2  15353
  Copyright terms: Public domain W3C validator