MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqvf Structured version   Visualization version   GIF version

Theorem eqvf 3204
Description: The universe contains every set. (Contributed by BJ, 15-Jul-2021.)
Hypothesis
Ref Expression
eqvf.1 𝑥𝐴
Assertion
Ref Expression
eqvf (𝐴 = V ↔ ∀𝑥 𝑥𝐴)

Proof of Theorem eqvf
StepHypRef Expression
1 eqvf.1 . . 3 𝑥𝐴
2 nfcv 2764 . . 3 𝑥V
31, 2cleqf 2790 . 2 (𝐴 = V ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
4 vex 3203 . . . 4 𝑥 ∈ V
54tbt 359 . . 3 (𝑥𝐴 ↔ (𝑥𝐴𝑥 ∈ V))
65albii 1747 . 2 (∀𝑥 𝑥𝐴 ↔ ∀𝑥(𝑥𝐴𝑥 ∈ V))
73, 6bitr4i 267 1 (𝐴 = V ↔ ∀𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1481   = wceq 1483  wcel 1990  wnfc 2751  Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202
This theorem is referenced by:  eqv  3205
  Copyright terms: Public domain W3C validator