MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cleqf Structured version   Visualization version   GIF version

Theorem cleqf 2790
Description: Establish equality between classes, using bound-variable hypotheses instead of distinct variable conditions. See also cleqh 2724. (Contributed by NM, 26-May-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 17-Nov-2019.)
Hypotheses
Ref Expression
cleqf.1 𝑥𝐴
cleqf.2 𝑥𝐵
Assertion
Ref Expression
cleqf (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))

Proof of Theorem cleqf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cleqf.1 . . 3 𝑥𝐴
21nfcrii 2757 . 2 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
3 cleqf.2 . . 3 𝑥𝐵
43nfcrii 2757 . 2 (𝑦𝐵 → ∀𝑥 𝑦𝐵)
52, 4cleqh 2724 1 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1481   = wceq 1483  wcel 1990  wnfc 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-cleq 2615  df-clel 2618  df-nfc 2753
This theorem is referenced by:  abid2f  2791  eqvf  3204  eqrd  3622  eq0f  3925  n0fOLD  3928  iunab  4566  iinab  4581  mbfposr  23419  mbfinf  23432  itg1climres  23481  bnj1366  30900  bj-rabtrALT  32927  compab  38645  dfcleqf  39255
  Copyright terms: Public domain W3C validator