MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  errel Structured version   Visualization version   GIF version

Theorem errel 7751
Description: An equivalence relation is a relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errel (𝑅 Er 𝐴 → Rel 𝑅)

Proof of Theorem errel
StepHypRef Expression
1 df-er 7742 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp1bi 1076 1 (𝑅 Er 𝐴 → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  cun 3572  wss 3574  ccnv 5113  dom cdm 5114  ccom 5118  Rel wrel 5119   Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039  df-er 7742
This theorem is referenced by:  ercl  7753  ersym  7754  ertr  7757  ercnv  7763  erssxp  7765  erth  7791  iiner  7819  frgpuplem  18185  ismntop  30070  topfneec  32350  prter3  34167
  Copyright terms: Public domain W3C validator