MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuplem Structured version   Visualization version   GIF version

Theorem frgpuplem 18185
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
frgpup.r = ( ~FG𝐼)
Assertion
Ref Expression
frgpuplem ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝑦,𝐵,𝑧   𝜑,𝑦,𝑧   𝑦,𝐼,𝑧
Allowed substitution hints:   𝐶(𝑦,𝑧)   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐻(𝑦,𝑧)   𝑉(𝑦,𝑧)   𝑊(𝑦,𝑧)

Proof of Theorem frgpuplem
Dummy variables 𝑎 𝑏 𝑢 𝑣 𝑛 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup.w . . . . . . 7 𝑊 = ( I ‘Word (𝐼 × 2𝑜))
2 frgpup.r . . . . . . 7 = ( ~FG𝐼)
31, 2efgval 18130 . . . . . 6 = {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))}
4 coeq2 5280 . . . . . . . . . . . . 13 (𝑢 = 𝑣 → (𝑇𝑢) = (𝑇𝑣))
54oveq2d 6666 . . . . . . . . . . . 12 (𝑢 = 𝑣 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))
6 eqid 2622 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} = {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}
75, 6eqer 7777 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V
87a1i 11 . . . . . . . . . 10 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} Er V)
9 ssv 3625 . . . . . . . . . . 11 𝑊 ⊆ V
109a1i 11 . . . . . . . . . 10 (𝜑𝑊 ⊆ V)
118, 10erinxp 7821 . . . . . . . . 9 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊)
12 df-xp 5120 . . . . . . . . . . . . 13 (𝑊 × 𝑊) = {⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)}
1312ineq1i 3810 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))})
14 incom 3805 . . . . . . . . . . . 12 ((𝑊 × 𝑊) ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊))
15 inopab 5252 . . . . . . . . . . . 12 ({⟨𝑢, 𝑣⟩ ∣ (𝑢𝑊𝑣𝑊)} ∩ {⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))}) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
1613, 14, 153eqtr3i 2652 . . . . . . . . . . 11 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
17 vex 3203 . . . . . . . . . . . . . 14 𝑢 ∈ V
18 vex 3203 . . . . . . . . . . . . . 14 𝑣 ∈ V
1917, 18prss 4351 . . . . . . . . . . . . 13 ((𝑢𝑊𝑣𝑊) ↔ {𝑢, 𝑣} ⊆ 𝑊)
2019anbi1i 731 . . . . . . . . . . . 12 (((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))))
2120opabbii 4717 . . . . . . . . . . 11 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝑊𝑣𝑊) ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
2216, 21eqtri 2644 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
23 ereq1 7749 . . . . . . . . . 10 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
2422, 23ax-mp 5 . . . . . . . . 9 (({⟨𝑢, 𝑣⟩ ∣ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))} ∩ (𝑊 × 𝑊)) Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
2511, 24sylib 208 . . . . . . . 8 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊)
26 simplrl 800 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑥𝑊)
27 fviss 6256 . . . . . . . . . . . . . . . 16 ( I ‘Word (𝐼 × 2𝑜)) ⊆ Word (𝐼 × 2𝑜)
281, 27eqsstri 3635 . . . . . . . . . . . . . . 15 𝑊 ⊆ Word (𝐼 × 2𝑜)
2928, 26sseldi 3601 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑥 ∈ Word (𝐼 × 2𝑜))
30 opelxpi 5148 . . . . . . . . . . . . . . . 16 ((𝑎𝐼𝑏 ∈ 2𝑜) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2𝑜))
3130adantl 482 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2𝑜))
32 simprl 794 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑎𝐼)
33 2oconcl 7583 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ 2𝑜 → (1𝑜𝑏) ∈ 2𝑜)
3433ad2antll 765 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (1𝑜𝑏) ∈ 2𝑜)
35 opelxpi 5148 . . . . . . . . . . . . . . . 16 ((𝑎𝐼 ∧ (1𝑜𝑏) ∈ 2𝑜) → ⟨𝑎, (1𝑜𝑏)⟩ ∈ (𝐼 × 2𝑜))
3632, 34, 35syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ⟨𝑎, (1𝑜𝑏)⟩ ∈ (𝐼 × 2𝑜))
3731, 36s2cld 13616 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜))
38 splcl 13503 . . . . . . . . . . . . . 14 ((𝑥 ∈ Word (𝐼 × 2𝑜) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2𝑜))
3929, 37, 38syl2anc 693 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ Word (𝐼 × 2𝑜))
401efgrcl 18128 . . . . . . . . . . . . . . 15 (𝑥𝑊 → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
4126, 40syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐼 ∈ V ∧ 𝑊 = Word (𝐼 × 2𝑜)))
4241simprd 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑊 = Word (𝐼 × 2𝑜))
4339, 42eleqtrrd 2704 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊)
4426, 43jca 554 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊))
45 swrdcl 13419 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ Word (𝐼 × 2𝑜) → (𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜))
4629, 45syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜))
47 frgpup.b . . . . . . . . . . . . . . . . . . 19 𝐵 = (Base‘𝐻)
48 frgpup.n . . . . . . . . . . . . . . . . . . 19 𝑁 = (invg𝐻)
49 frgpup.t . . . . . . . . . . . . . . . . . . 19 𝑇 = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
50 frgpup.h . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻 ∈ Grp)
51 frgpup.i . . . . . . . . . . . . . . . . . . 19 (𝜑𝐼𝑉)
52 frgpup.a . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹:𝐼𝐵)
5347, 48, 49, 50, 51, 52frgpuptf 18183 . . . . . . . . . . . . . . . . . 18 (𝜑𝑇:(𝐼 × 2𝑜)⟶𝐵)
5453ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑇:(𝐼 × 2𝑜)⟶𝐵)
55 ccatco 13581 . . . . . . . . . . . . . . . . 17 (((𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)))
5646, 37, 54, 55syl3anc 1326 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) = ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)))
5756oveq2d 6666 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))) = (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))))
5850ad2antrr 762 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝐻 ∈ Grp)
59 grpmnd 17429 . . . . . . . . . . . . . . . . 17 (𝐻 ∈ Grp → 𝐻 ∈ Mnd)
6058, 59syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝐻 ∈ Mnd)
61 wrdco 13577 . . . . . . . . . . . . . . . . 17 (((𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ∈ Word 𝐵)
6246, 54, 61syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ∈ Word 𝐵)
63 wrdco 13577 . . . . . . . . . . . . . . . . 17 ((⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word 𝐵)
6437, 54, 63syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word 𝐵)
65 eqid 2622 . . . . . . . . . . . . . . . . 17 (+g𝐻) = (+g𝐻)
6647, 65gsumccat 17378 . . . . . . . . . . . . . . . 16 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ∈ Word 𝐵 ∧ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))))
6760, 62, 64, 66syl3anc 1326 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))))
6854, 31, 36s2co 13665 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1𝑜𝑏)⟩)”⟩)
69 df-ov 6653 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩)
7069a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑎𝑇𝑏) = (𝑇‘⟨𝑎, 𝑏⟩))
71 df-ov 6653 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑎(𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)𝑏) = ((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩)
72 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩) = (𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)
7372efgmval 18125 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑎𝐼𝑏 ∈ 2𝑜) → (𝑎(𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)𝑏) = ⟨𝑎, (1𝑜𝑏)⟩)
7471, 73syl5eqr 2670 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑎𝐼𝑏 ∈ 2𝑜) → ((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1𝑜𝑏)⟩)
7574adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩) = ⟨𝑎, (1𝑜𝑏)⟩)
7675fveq2d 6195 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑇‘⟨𝑎, (1𝑜𝑏)⟩))
7747, 48, 49, 50, 51, 52, 72frgpuptinv 18184 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ⟨𝑎, 𝑏⟩ ∈ (𝐼 × 2𝑜)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7830, 77sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
7978adantlr 751 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇‘((𝑦𝐼, 𝑧 ∈ 2𝑜 ↦ ⟨𝑦, (1𝑜𝑧)⟩)‘⟨𝑎, 𝑏⟩)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
8076, 79eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇‘⟨𝑎, (1𝑜𝑏)⟩) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩)))
8169fveq2i 6194 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁‘(𝑎𝑇𝑏)) = (𝑁‘(𝑇‘⟨𝑎, 𝑏⟩))
8280, 81syl6reqr 2675 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑁‘(𝑎𝑇𝑏)) = (𝑇‘⟨𝑎, (1𝑜𝑏)⟩))
8370, 82s2eqd 13608 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩ = ⟨“(𝑇‘⟨𝑎, 𝑏⟩)(𝑇‘⟨𝑎, (1𝑜𝑏)⟩)”⟩)
8468, 83eqtr4d 2659 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) = ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩)
8584oveq2d 6666 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) = (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩))
86 simprr 796 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑏 ∈ 2𝑜)
8754, 32, 86fovrnd 6806 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑎𝑇𝑏) ∈ 𝐵)
8847, 48grpinvcl 17467 . . . . . . . . . . . . . . . . . . . 20 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
8958, 87, 88syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵)
9047, 65gsumws2 17379 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Mnd ∧ (𝑎𝑇𝑏) ∈ 𝐵 ∧ (𝑁‘(𝑎𝑇𝑏)) ∈ 𝐵) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
9160, 87, 89, 90syl3anc 1326 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg ⟨“(𝑎𝑇𝑏)(𝑁‘(𝑎𝑇𝑏))”⟩) = ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))))
92 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (0g𝐻) = (0g𝐻)
9347, 65, 92, 48grprinv 17469 . . . . . . . . . . . . . . . . . . 19 ((𝐻 ∈ Grp ∧ (𝑎𝑇𝑏) ∈ 𝐵) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9458, 87, 93syl2anc 693 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝑎𝑇𝑏)(+g𝐻)(𝑁‘(𝑎𝑇𝑏))) = (0g𝐻))
9585, 91, 943eqtrd 2660 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) = (0g𝐻))
9695oveq2d 6666 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))) = ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(0g𝐻)))
9747gsumwcl 17377 . . . . . . . . . . . . . . . . . 18 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ∈ Word 𝐵) → (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))) ∈ 𝐵)
9860, 62, 97syl2anc 693 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))) ∈ 𝐵)
9947, 65, 92grprid 17453 . . . . . . . . . . . . . . . . 17 ((𝐻 ∈ Grp ∧ (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))) ∈ 𝐵) → ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))))
10058, 98, 99syl2anc 693 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(0g𝐻)) = (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))))
10196, 100eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))) = (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))))
10257, 67, 1013eqtrrd 2661 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩))) = (𝐻 Σg (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩))))
103102oveq1d 6665 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
104 swrdcl 13419 . . . . . . . . . . . . . . . 16 (𝑥 ∈ Word (𝐼 × 2𝑜) → (𝑥 substr ⟨𝑛, (#‘𝑥)⟩) ∈ Word (𝐼 × 2𝑜))
10529, 104syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 substr ⟨𝑛, (#‘𝑥)⟩) ∈ Word (𝐼 × 2𝑜))
106 wrdco 13577 . . . . . . . . . . . . . . 15 (((𝑥 substr ⟨𝑛, (#‘𝑥)⟩) ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) ∈ Word 𝐵)
107105, 54, 106syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) ∈ Word 𝐵)
10847, 65gsumccat 17378 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
10960, 62, 107, 108syl3anc 1326 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
110 ccatcl 13359 . . . . . . . . . . . . . . . 16 (((𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜)) → ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word (𝐼 × 2𝑜))
11146, 37, 110syl2anc 693 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word (𝐼 × 2𝑜))
112 wrdco 13577 . . . . . . . . . . . . . . 15 ((((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ∈ Word 𝐵)
113111, 54, 112syl2anc 693 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ∈ Word 𝐵)
11447, 65gsumccat 17378 . . . . . . . . . . . . . 14 ((𝐻 ∈ Mnd ∧ (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ∈ Word 𝐵 ∧ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) ∈ Word 𝐵) → (𝐻 Σg ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
11560, 113, 107, 114syl3anc 1326 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = ((𝐻 Σg (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)))(+g𝐻)(𝐻 Σg (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
116103, 109, 1153eqtr4d 2666 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
117 simplrr 801 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑛 ∈ (0...(#‘𝑥)))
118 elfzuz 12338 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (0...(#‘𝑥)) → 𝑛 ∈ (ℤ‘0))
119 eluzfz1 12348 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ (ℤ‘0) → 0 ∈ (0...𝑛))
120117, 118, 1193syl 18 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 0 ∈ (0...𝑛))
121 lencl 13324 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ Word (𝐼 × 2𝑜) → (#‘𝑥) ∈ ℕ0)
12229, 121syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (#‘𝑥) ∈ ℕ0)
123 nn0uz 11722 . . . . . . . . . . . . . . . . . . 19 0 = (ℤ‘0)
124122, 123syl6eleq 2711 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (#‘𝑥) ∈ (ℤ‘0))
125 eluzfz2 12349 . . . . . . . . . . . . . . . . . 18 ((#‘𝑥) ∈ (ℤ‘0) → (#‘𝑥) ∈ (0...(#‘𝑥)))
126124, 125syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (#‘𝑥) ∈ (0...(#‘𝑥)))
127 ccatswrd 13456 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ Word (𝐼 × 2𝑜) ∧ (0 ∈ (0...𝑛) ∧ 𝑛 ∈ (0...(#‘𝑥)) ∧ (#‘𝑥) ∈ (0...(#‘𝑥)))) → ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) = (𝑥 substr ⟨0, (#‘𝑥)⟩))
12829, 120, 117, 126, 127syl13anc 1328 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) = (𝑥 substr ⟨0, (#‘𝑥)⟩))
129 swrdid 13428 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ Word (𝐼 × 2𝑜) → (𝑥 substr ⟨0, (#‘𝑥)⟩) = 𝑥)
13029, 129syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 substr ⟨0, (#‘𝑥)⟩) = 𝑥)
131128, 130eqtrd 2656 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)) = 𝑥)
132131coeq2d 5284 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))) = (𝑇𝑥))
133 ccatco 13581 . . . . . . . . . . . . . . 15 (((𝑥 substr ⟨0, 𝑛⟩) ∈ Word (𝐼 × 2𝑜) ∧ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩) ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
13446, 105, 54, 133syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))) = ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
135132, 134eqtr3d 2658 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇𝑥) = ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
136135oveq2d 6666 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg ((𝑇 ∘ (𝑥 substr ⟨0, 𝑛⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
137 splval 13502 . . . . . . . . . . . . . . . 16 ((𝑥𝑊 ∧ (𝑛 ∈ (0...(#‘𝑥)) ∧ 𝑛 ∈ (0...(#‘𝑥)) ∧ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩ ∈ Word (𝐼 × 2𝑜))) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) = (((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))
13826, 117, 117, 37, 137syl13anc 1328 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) = (((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))
139138coeq2d 5284 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) = (𝑇 ∘ (((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
140 ccatco 13581 . . . . . . . . . . . . . . 15 ((((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ∈ Word (𝐼 × 2𝑜) ∧ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩) ∈ Word (𝐼 × 2𝑜) ∧ 𝑇:(𝐼 × 2𝑜)⟶𝐵) → (𝑇 ∘ (((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
141111, 105, 54, 140syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ (((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩) ++ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))) = ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
142139, 141eqtrd 2656 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) = ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩))))
143142oveq2d 6666 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))) = (𝐻 Σg ((𝑇 ∘ ((𝑥 substr ⟨0, 𝑛⟩) ++ ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩)) ++ (𝑇 ∘ (𝑥 substr ⟨𝑛, (#‘𝑥)⟩)))))
144116, 136, 1433eqtr4d 2666 . . . . . . . . . . 11 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))
145 vex 3203 . . . . . . . . . . . 12 𝑥 ∈ V
146 ovex 6678 . . . . . . . . . . . 12 (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ V
147 eleq1 2689 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑢𝑊𝑥𝑊))
148 eleq1 2689 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) → (𝑣𝑊 ↔ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊))
149147, 148bi2anan9 917 . . . . . . . . . . . . . 14 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) → ((𝑢𝑊𝑣𝑊) ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊)))
15019, 149syl5bbr 274 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ (𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊)))
151 coeq2 5280 . . . . . . . . . . . . . . 15 (𝑢 = 𝑥 → (𝑇𝑢) = (𝑇𝑥))
152151oveq2d 6666 . . . . . . . . . . . . . 14 (𝑢 = 𝑥 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑥)))
153 coeq2 5280 . . . . . . . . . . . . . . 15 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) → (𝑇𝑣) = (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
154153oveq2d 6666 . . . . . . . . . . . . . 14 (𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))
155152, 154eqeqan12d 2638 . . . . . . . . . . . . 13 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))))
156150, 155anbi12d 747 . . . . . . . . . . . 12 ((𝑢 = 𝑥𝑣 = (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))))
157 eqid 2622 . . . . . . . . . . . 12 {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}
158145, 146, 156, 157braba 4992 . . . . . . . . . . 11 (𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ ((𝑥𝑊 ∧ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ∈ 𝑊) ∧ (𝐻 Σg (𝑇𝑥)) = (𝐻 Σg (𝑇 ∘ (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))))
15944, 144, 158sylanbrc 698 . . . . . . . . . 10 (((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) ∧ (𝑎𝐼𝑏 ∈ 2𝑜)) → 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))
160159ralrimivva 2971 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑊𝑛 ∈ (0...(#‘𝑥)))) → ∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))
161160ralrimivva 2971 . . . . . . . 8 (𝜑 → ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))
162 fvex 6201 . . . . . . . . . . 11 ( I ‘Word (𝐼 × 2𝑜)) ∈ V
1631, 162eqeltri 2697 . . . . . . . . . 10 𝑊 ∈ V
164 erex 7766 . . . . . . . . . 10 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 → (𝑊 ∈ V → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V))
16525, 163, 164mpisyl 21 . . . . . . . . 9 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V)
166 ereq1 7749 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑟 Er 𝑊 ↔ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊))
167 breq 4655 . . . . . . . . . . . . 13 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
1681672ralbidv 2989 . . . . . . . . . . . 12 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ ∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
1691682ralbidv 2989 . . . . . . . . . . 11 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → (∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩) ↔ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)))
170166, 169anbi12d 747 . . . . . . . . . 10 (𝑟 = {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} → ((𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩)) ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))
171170elabg 3351 . . . . . . . . 9 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ V → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))
172165, 171syl 17 . . . . . . . 8 (𝜑 → ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))} ↔ ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} (𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))))
17325, 161, 172mpbir2and 957 . . . . . . 7 (𝜑 → {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))})
174 intss1 4492 . . . . . . 7 ({⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))} ∈ {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))} → {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
175173, 174syl 17 . . . . . 6 (𝜑 {𝑟 ∣ (𝑟 Er 𝑊 ∧ ∀𝑥𝑊𝑛 ∈ (0...(#‘𝑥))∀𝑎𝐼𝑏 ∈ 2𝑜 𝑥𝑟(𝑥 splice ⟨𝑛, 𝑛, ⟨“⟨𝑎, 𝑏⟩⟨𝑎, (1𝑜𝑏)⟩”⟩⟩))} ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
1763, 175syl5eqss 3649 . . . . 5 (𝜑 ⊆ {⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))})
177176ssbrd 4696 . . . 4 (𝜑 → (𝐴 𝐶𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶))
178177imp 445 . . 3 ((𝜑𝐴 𝐶) → 𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶)
1791, 2efger 18131 . . . . . 6 Er 𝑊
180 errel 7751 . . . . . 6 ( Er 𝑊 → Rel )
181179, 180mp1i 13 . . . . 5 (𝜑 → Rel )
182 brrelex12 5155 . . . . 5 ((Rel 𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
183181, 182sylan 488 . . . 4 ((𝜑𝐴 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
184 preq12 4270 . . . . . . 7 ((𝑢 = 𝐴𝑣 = 𝐶) → {𝑢, 𝑣} = {𝐴, 𝐶})
185184sseq1d 3632 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ({𝑢, 𝑣} ⊆ 𝑊 ↔ {𝐴, 𝐶} ⊆ 𝑊))
186 coeq2 5280 . . . . . . . 8 (𝑢 = 𝐴 → (𝑇𝑢) = (𝑇𝐴))
187186oveq2d 6666 . . . . . . 7 (𝑢 = 𝐴 → (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝐴)))
188 coeq2 5280 . . . . . . . 8 (𝑣 = 𝐶 → (𝑇𝑣) = (𝑇𝐶))
189188oveq2d 6666 . . . . . . 7 (𝑣 = 𝐶 → (𝐻 Σg (𝑇𝑣)) = (𝐻 Σg (𝑇𝐶)))
190187, 189eqeqan12d 2638 . . . . . 6 ((𝑢 = 𝐴𝑣 = 𝐶) → ((𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)) ↔ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
191185, 190anbi12d 747 . . . . 5 ((𝑢 = 𝐴𝑣 = 𝐶) → (({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣))) ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
192191, 157brabga 4989 . . . 4 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
193183, 192syl 17 . . 3 ((𝜑𝐴 𝐶) → (𝐴{⟨𝑢, 𝑣⟩ ∣ ({𝑢, 𝑣} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝑢)) = (𝐻 Σg (𝑇𝑣)))}𝐶 ↔ ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))))
194178, 193mpbid 222 . 2 ((𝜑𝐴 𝐶) → ({𝐴, 𝐶} ⊆ 𝑊 ∧ (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶))))
195194simprd 479 1 ((𝜑𝐴 𝐶) → (𝐻 Σg (𝑇𝐴)) = (𝐻 Σg (𝑇𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {cab 2608  wral 2912  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  ifcif 4086  {cpr 4179  cop 4183  cotp 4185   cint 4475   class class class wbr 4653  {copab 4712   I cid 5023   × cxp 5112  ccom 5118  Rel wrel 5119  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  1𝑜c1o 7553  2𝑜c2o 7554   Er wer 7739  0cc0 9936  0cn0 11292  cuz 11687  ...cfz 12326  #chash 13117  Word cword 13291   ++ cconcat 13293   substr csubstr 13295   splice csplice 13296  ⟨“cs2 13586  Basecbs 15857  +gcplusg 15941  0gc0g 16100   Σg cgsu 16101  Mndcmnd 17294  Grpcgrp 17422  invgcminusg 17423   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-seq 12802  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-0g 16102  df-gsum 16103  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-grp 17425  df-minusg 17426  df-efg 18122
This theorem is referenced by:  frgpupf  18186
  Copyright terms: Public domain W3C validator