MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  erdm Structured version   Visualization version   GIF version

Theorem erdm 7752
Description: The domain of an equivalence relation. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erdm (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)

Proof of Theorem erdm
StepHypRef Expression
1 df-er 7742 . 2 (𝑅 Er 𝐴 ↔ (Rel 𝑅 ∧ dom 𝑅 = 𝐴 ∧ (𝑅 ∪ (𝑅𝑅)) ⊆ 𝑅))
21simp2bi 1077 1 (𝑅 Er 𝐴 → dom 𝑅 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  cun 3572  wss 3574  ccnv 5113  dom cdm 5114  ccom 5118  Rel wrel 5119   Er wer 7739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039  df-er 7742
This theorem is referenced by:  ercl  7753  erref  7762  errn  7764  erssxp  7765  erexb  7767  ereldm  7790  uniqs2  7809  iiner  7819  eceqoveq  7853  prsrlem1  9893  ltsrpr  9898  0nsr  9900  divsfval  16207  sylow1lem3  18015  sylow1lem5  18017  sylow2a  18034  vitalilem2  23378  vitalilem3  23379  vitalilem5  23381
  Copyright terms: Public domain W3C validator