MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eunex Structured version   Visualization version   GIF version

Theorem eunex 4859
Description: Existential uniqueness implies there is a value for which the wff argument is false. (Contributed by NM, 24-Oct-2010.)
Assertion
Ref Expression
eunex (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑)

Proof of Theorem eunex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dtru 4857 . . . . 5 ¬ ∀𝑥 𝑥 = 𝑦
2 alim 1738 . . . . 5 (∀𝑥(𝜑𝑥 = 𝑦) → (∀𝑥𝜑 → ∀𝑥 𝑥 = 𝑦))
31, 2mtoi 190 . . . 4 (∀𝑥(𝜑𝑥 = 𝑦) → ¬ ∀𝑥𝜑)
43exlimiv 1858 . . 3 (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ¬ ∀𝑥𝜑)
54adantl 482 . 2 ((∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)) → ¬ ∀𝑥𝜑)
6 eu3v 2498 . 2 (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
7 exnal 1754 . 2 (∃𝑥 ¬ 𝜑 ↔ ¬ ∀𝑥𝜑)
85, 6, 73imtr4i 281 1 (∃!𝑥𝜑 → ∃𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1481  wex 1704  ∃!weu 2470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475
This theorem is referenced by:  reusv2lem2  4869  reusv2lem2OLD  4870  unnt  32407  amosym1  32425  alneu  41201
  Copyright terms: Public domain W3C validator