| Step | Hyp | Ref
| Expression |
| 1 | | eunex 4859 |
. . . . 5
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑥 ¬ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 2 | | exnal 1754 |
. . . . 5
⊢
(∃𝑥 ¬
∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ¬ ∀𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 3 | 1, 2 | sylib 208 |
. . . 4
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ¬ ∀𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 4 | | rzal 4073 |
. . . . 5
⊢ (𝐴 = ∅ → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 5 | 4 | alrimiv 1855 |
. . . 4
⊢ (𝐴 = ∅ → ∀𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 6 | 3, 5 | nsyl3 133 |
. . 3
⊢ (𝐴 = ∅ → ¬
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 7 | 6 | pm2.21d 118 |
. 2
⊢ (𝐴 = ∅ → (∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 8 | | simpr 477 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 9 | | euex 2494 |
. . . . . . 7
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 10 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → (𝑥 = 𝐵 ↔ 𝑧 = 𝐵)) |
| 11 | 10 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑧 = 𝐵)) |
| 12 | 11 | cbvexv 2275 |
. . . . . . 7
⊢
(∃𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃𝑧∀𝑦 ∈ 𝐴 𝑧 = 𝐵) |
| 13 | 9, 12 | sylib 208 |
. . . . . 6
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑧∀𝑦 ∈ 𝐴 𝑧 = 𝐵) |
| 14 | | nfv 1843 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦 𝐴 ≠ ∅ |
| 15 | | nfra1 2941 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐴 𝑧 = 𝐵 |
| 16 | 14, 15 | nfan 1828 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦(𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) |
| 17 | | nfra1 2941 |
. . . . . . . . . . 11
⊢
Ⅎ𝑦∀𝑦 ∈ 𝐴 𝑥 = 𝐵 |
| 18 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 𝐵)) → 𝑥 = 𝐵) |
| 19 | | rspa 2930 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑦 ∈
𝐴 𝑧 = 𝐵 ∧ 𝑦 ∈ 𝐴) → 𝑧 = 𝐵) |
| 20 | 19 | ad2ant2lr 784 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 𝐵)) → 𝑧 = 𝐵) |
| 21 | 18, 20 | eqtr4d 2659 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 𝐵)) → 𝑥 = 𝑧) |
| 22 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 𝐵)) → ∀𝑦 ∈ 𝐴 𝑧 = 𝐵) |
| 23 | 22, 11 | syl5ibrcom 237 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 𝐵)) → (𝑥 = 𝑧 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 24 | 21, 23 | mpd 15 |
. . . . . . . . . . . 12
⊢ (((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) ∧ (𝑦 ∈ 𝐴 ∧ 𝑥 = 𝐵)) → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 25 | 24 | exp32 631 |
. . . . . . . . . . 11
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (𝑦 ∈ 𝐴 → (𝑥 = 𝐵 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵))) |
| 26 | 16, 17, 25 | rexlimd 3026 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 27 | | r19.2z 4060 |
. . . . . . . . . . . 12
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 28 | 27 | ex 450 |
. . . . . . . . . . 11
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 29 | 28 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 30 | 26, 29 | impbid 202 |
. . . . . . . . 9
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 31 | 30 | eubidv 2490 |
. . . . . . . 8
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑧 = 𝐵) → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 32 | 31 | ex 450 |
. . . . . . 7
⊢ (𝐴 ≠ ∅ →
(∀𝑦 ∈ 𝐴 𝑧 = 𝐵 → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵))) |
| 33 | 32 | exlimdv 1861 |
. . . . . 6
⊢ (𝐴 ≠ ∅ →
(∃𝑧∀𝑦 ∈ 𝐴 𝑧 = 𝐵 → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵))) |
| 34 | 13, 33 | syl5 34 |
. . . . 5
⊢ (𝐴 ≠ ∅ →
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵))) |
| 35 | 34 | imp 445 |
. . . 4
⊢ ((𝐴 ≠ ∅ ∧
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → (∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵 ↔ ∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 36 | 8, 35 | mpbird 247 |
. . 3
⊢ ((𝐴 ≠ ∅ ∧
∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵) → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) |
| 37 | 36 | ex 450 |
. 2
⊢ (𝐴 ≠ ∅ →
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵)) |
| 38 | 7, 37 | pm2.61ine 2877 |
1
⊢
(∃!𝑥∀𝑦 ∈ 𝐴 𝑥 = 𝐵 → ∃!𝑥∃𝑦 ∈ 𝐴 𝑥 = 𝐵) |