MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv2lem2OLD Structured version   Visualization version   GIF version

Theorem reusv2lem2OLD 4870
Description: Obsolete proof of reusv2lem2 4869 as of 7-Aug-2021. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
reusv2lem2OLD (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem reusv2lem2OLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eunex 4859 . . . . 5 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑥 ¬ ∀𝑦𝐴 𝑥 = 𝐵)
2 exnal 1754 . . . . 5 (∃𝑥 ¬ ∀𝑦𝐴 𝑥 = 𝐵 ↔ ¬ ∀𝑥𝑦𝐴 𝑥 = 𝐵)
31, 2sylib 208 . . . 4 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ¬ ∀𝑥𝑦𝐴 𝑥 = 𝐵)
4 rzal 4073 . . . . 5 (𝐴 = ∅ → ∀𝑦𝐴 𝑥 = 𝐵)
54alrimiv 1855 . . . 4 (𝐴 = ∅ → ∀𝑥𝑦𝐴 𝑥 = 𝐵)
63, 5nsyl3 133 . . 3 (𝐴 = ∅ → ¬ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
76pm2.21d 118 . 2 (𝐴 = ∅ → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
8 simpr 477 . . . 4 ((𝐴 ≠ ∅ ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
9 euex 2494 . . . . . . 7 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑥𝑦𝐴 𝑥 = 𝐵)
10 eqeq1 2626 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = 𝐵𝑧 = 𝐵))
1110ralbidv 2986 . . . . . . . 8 (𝑥 = 𝑧 → (∀𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑧 = 𝐵))
1211cbvexv 2275 . . . . . . 7 (∃𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃𝑧𝑦𝐴 𝑧 = 𝐵)
139, 12sylib 208 . . . . . 6 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃𝑧𝑦𝐴 𝑧 = 𝐵)
14 nfv 1843 . . . . . . . . . . . 12 𝑦 𝐴 ≠ ∅
15 nfra1 2941 . . . . . . . . . . . 12 𝑦𝑦𝐴 𝑧 = 𝐵
1614, 15nfan 1828 . . . . . . . . . . 11 𝑦(𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵)
17 nfra1 2941 . . . . . . . . . . 11 𝑦𝑦𝐴 𝑥 = 𝐵
18 simprr 796 . . . . . . . . . . . . . 14 (((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) ∧ (𝑦𝐴𝑥 = 𝐵)) → 𝑥 = 𝐵)
19 rspa 2930 . . . . . . . . . . . . . . 15 ((∀𝑦𝐴 𝑧 = 𝐵𝑦𝐴) → 𝑧 = 𝐵)
2019ad2ant2lr 784 . . . . . . . . . . . . . 14 (((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) ∧ (𝑦𝐴𝑥 = 𝐵)) → 𝑧 = 𝐵)
2118, 20eqtr4d 2659 . . . . . . . . . . . . 13 (((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) ∧ (𝑦𝐴𝑥 = 𝐵)) → 𝑥 = 𝑧)
22 simplr 792 . . . . . . . . . . . . . 14 (((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) ∧ (𝑦𝐴𝑥 = 𝐵)) → ∀𝑦𝐴 𝑧 = 𝐵)
2322, 11syl5ibrcom 237 . . . . . . . . . . . . 13 (((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) ∧ (𝑦𝐴𝑥 = 𝐵)) → (𝑥 = 𝑧 → ∀𝑦𝐴 𝑥 = 𝐵))
2421, 23mpd 15 . . . . . . . . . . . 12 (((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) ∧ (𝑦𝐴𝑥 = 𝐵)) → ∀𝑦𝐴 𝑥 = 𝐵)
2524exp32 631 . . . . . . . . . . 11 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) → (𝑦𝐴 → (𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵)))
2616, 17, 25rexlimd 3026 . . . . . . . . . 10 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) → (∃𝑦𝐴 𝑥 = 𝐵 → ∀𝑦𝐴 𝑥 = 𝐵))
27 r19.2z 4060 . . . . . . . . . . . 12 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑥 = 𝐵) → ∃𝑦𝐴 𝑥 = 𝐵)
2827ex 450 . . . . . . . . . . 11 (𝐴 ≠ ∅ → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
2928adantr 481 . . . . . . . . . 10 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) → (∀𝑦𝐴 𝑥 = 𝐵 → ∃𝑦𝐴 𝑥 = 𝐵))
3026, 29impbid 202 . . . . . . . . 9 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) → (∃𝑦𝐴 𝑥 = 𝐵 ↔ ∀𝑦𝐴 𝑥 = 𝐵))
3130eubidv 2490 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑧 = 𝐵) → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
3231ex 450 . . . . . . 7 (𝐴 ≠ ∅ → (∀𝑦𝐴 𝑧 = 𝐵 → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)))
3332exlimdv 1861 . . . . . 6 (𝐴 ≠ ∅ → (∃𝑧𝑦𝐴 𝑧 = 𝐵 → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)))
3413, 33syl5 34 . . . . 5 (𝐴 ≠ ∅ → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵)))
3534imp 445 . . . 4 ((𝐴 ≠ ∅ ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 ↔ ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
368, 35mpbird 247 . . 3 ((𝐴 ≠ ∅ ∧ ∃!𝑥𝑦𝐴 𝑥 = 𝐵) → ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
3736ex 450 . 2 (𝐴 ≠ ∅ → (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃!𝑥𝑦𝐴 𝑥 = 𝐵))
387, 37pm2.61ine 2877 1 (∃!𝑥𝑦𝐴 𝑥 = 𝐵 → ∃!𝑥𝑦𝐴 𝑥 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wex 1704  wcel 1990  ∃!weu 2470  wne 2794  wral 2912  wrex 2913  c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-nul 3916
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator