| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eusv2i | Structured version Visualization version GIF version | ||
| Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) (Revised by Mario Carneiro, 18-Nov-2016.) |
| Ref | Expression |
|---|---|
| eusv2i | ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2480 | . . 3 ⊢ Ⅎ𝑦∃!𝑦∀𝑥 𝑦 = 𝐴 | |
| 2 | nfcvd 2765 | . . . . . 6 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝑦) | |
| 3 | eusvnf 4861 | . . . . . 6 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | |
| 4 | 2, 3 | nfeqd 2772 | . . . . 5 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
| 5 | 4 | nfrd 1717 | . . . 4 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) |
| 6 | 19.2 1892 | . . . 4 ⊢ (∀𝑥 𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴) | |
| 7 | 5, 6 | impbid1 215 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑦 = 𝐴)) |
| 8 | 1, 7 | eubid 2488 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ ∃!𝑦∀𝑥 𝑦 = 𝐴)) |
| 9 | 8 | ibir 257 | 1 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1481 = wceq 1483 ∃wex 1704 ∃!weu 2470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-nul 3916 |
| This theorem is referenced by: eusv2nf 4864 |
| Copyright terms: Public domain | W3C validator |