| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eubid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for uniqueness quantifier (deduction rule). (Contributed by NM, 9-Jul-1994.) |
| Ref | Expression |
|---|---|
| eubid.1 | ⊢ Ⅎ𝑥𝜑 |
| eubid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| eubid | ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eubid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | eubid.2 | . . . . 5 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | bibi1d 333 | . . . 4 ⊢ (𝜑 → ((𝜓 ↔ 𝑥 = 𝑦) ↔ (𝜒 ↔ 𝑥 = 𝑦))) |
| 4 | 1, 3 | albid 2090 | . . 3 ⊢ (𝜑 → (∀𝑥(𝜓 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝜒 ↔ 𝑥 = 𝑦))) |
| 5 | 4 | exbidv 1850 | . 2 ⊢ (𝜑 → (∃𝑦∀𝑥(𝜓 ↔ 𝑥 = 𝑦) ↔ ∃𝑦∀𝑥(𝜒 ↔ 𝑥 = 𝑦))) |
| 6 | df-eu 2474 | . 2 ⊢ (∃!𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 ↔ 𝑥 = 𝑦)) | |
| 7 | df-eu 2474 | . 2 ⊢ (∃!𝑥𝜒 ↔ ∃𝑦∀𝑥(𝜒 ↔ 𝑥 = 𝑦)) | |
| 8 | 5, 6, 7 | 3bitr4g 303 | 1 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∃wex 1704 Ⅎwnf 1708 ∃!weu 2470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 df-eu 2474 |
| This theorem is referenced by: mobid 2489 eubidv 2490 euor 2512 euor2 2514 euan 2530 reubida 3124 reueq1f 3136 eusv2i 4863 reusv2lem3 4871 nbusgredgeu0 26270 eubi 38637 |
| Copyright terms: Public domain | W3C validator |