![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-ss | Structured version Visualization version GIF version |
Description: Example for df-ss 3588. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-ss | ⊢ {1, 2} ⊆ {1, 2, 3} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 3776 | . 2 ⊢ {1, 2} ⊆ ({1, 2} ∪ {3}) | |
2 | df-tp 4182 | . 2 ⊢ {1, 2, 3} = ({1, 2} ∪ {3}) | |
3 | 1, 2 | sseqtr4i 3638 | 1 ⊢ {1, 2} ⊆ {1, 2, 3} |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3572 ⊆ wss 3574 {csn 4177 {cpr 4179 {ctp 4181 1c1 9937 2c2 11070 3c3 11071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-in 3581 df-ss 3588 df-tp 4182 |
This theorem is referenced by: ex-pss 27285 |
Copyright terms: Public domain | W3C validator |